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Chapter 1

Introduction

I 1.1 Mathematical Statistics with Mathematica

1.1 A A New Approach

The use of computer software in statistics is far from new. Indeed, hundreds of statistical
computer programs exist. Yet, underlying existing programs is almost always a
numerical /graphical view of the world. Mathematica can easily handle the numerical and
graphical sides, but it offers in addition an extremely powerful and flexible symbolic
computer algebra system. The mathStatica software package that accompanies this book
builds upon that symbolic engine to create a sophisticated toolset specially designed for
doing mathematical statistics.

While the subject matter of this text is similar to a traditional mathematical statistics
text, this is not a traditional text. The reader will find few proofs and comparatively few
theorems. After all, the theorem/proof text is already well served by many excellent
volumes on mathematical statistics. Nor is this a cookbook of numerical recipes bundled
into a computer package, for there is limited virtue in applying Mathematica as a mere
numerical tool. Instead, this text strives to bring mathematical statistics to life. We hope it
will make an exciting and substantial contribution to the way mathematical statistics is
both practised and taught.

1.1 B Design Philosophy

mathStatica has been designed with two central goals: it sets out to be general, and it
strives to be delightfully simple.

By general, we mean that it should nor be limited to a set of special or well-known
textbook distributions. It should not operate like a textbook appendix with prepared ‘crib
sheet’ answers. Rather, it should know how to solve problems from first principles. It
should seamlessly handle: univariate and multivariate distributions, continuous and
discrete random variables, and smooth and kinked densities—all with and without
parameters. It should be able to handle mixtures, truncated distributions, reflected
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distributions, folded distributions, and distributions of functions of random variables, as
well as distributions no-one has ever thought of before.

By delightfully simple, we mean both (i) easy to use, and (ii) able to solve problems
that seem difficult, but which are formally quite simple. Consider, for instance, playing a
devilish game of chess against a strong chess computer: in the middle of the game, after a
short pause, the computer announces, “Mate in 16 moves”. The problem it has solved
might seem fantastically difficult, but it is really just a ‘delightfully simple’ finite problem
that is conceptually no different than looking just two moves ahead. The salient point is
that as soon as one has a tool for solving such problems, the notion of what is difficult
changes completely. A pocket calculator is certainly a delightfully simple device: it is easy
to use, and it can solve tricky problems that were previously thought to be difficult. But
today, few people bother to ponder at the marvel of a calculator any more, and we now
generally spend our time either using such tools or trying to solve higher-order conceptual
problems —and so, we are certain, it will be with mathematical statistics too.

In fact, while much of the material traditionally studied in mathematical statistics
courses may appear difficult, such material is often really just delightfully simple.
Normally, all we want is an expectation, or a probability, or a transformation. But once we
are armed with say a computerised expectation operator, we can find any kind of
expectation including the mean, variance, skewness, kurtosis, mean deviation, moment
generating function, characteristic function, raw moments, central moments, cumulants,
probability generating function, factorial moment generating function, entropy, and so on.
Normally, many of these calculations are not attempted in undergraduate texts, because
the mechanics are deemed too hard. And yet, underlying all of them is just the delightfully
simple expectation operator.

1.1 C If You Are New to Mathematica

For those readers who do not own a copy of Mathematica, this book comes bundled with a
free trial copy of Mathematica Version 4. This will enable you to use mathStatica, and try
out and evaluate all the examples in this book.

If you have never used Mathematica before, we recommend that you first read the
opening pages of Wolfram (1999) and run through some examples. This will give you a
good feel for Mathematica. Second, new users should learn how to enter formulae into
Mathematica. This can be done via palettes, see

File Menu > Palettes > Basiclnput,

or via the keyboard (see §1.5 below), or just by copy and pasting examples from this book.
Third, both new and experienced readers may benefit from browsing Appendices A.1 to
A.7 of this book, which cover a plethora of tips and tricks.

Before proceeding further, please ensure that Mathematica Version 4 (or later)
is installed on your computer.
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I 1.2 Installation, Registration and Password

1.2 A Installation, Registration and Password

Before starting, please make sure you have a working copy of Mathematica Version 4 (or
later) installed on your computer.

Installing mathStatica is an easy 4-step process, irrespective of whether you use a
Macintosh, Windows, or a flavour of UNIX.

Step 1: Insert the mathStatica CD-ROM into your computer.

Step 2: Copy the following files:

(i) mathStatica.m (file)
(ii) mathStatica (folder / directory)

from the mathStatica CD-ROM into the
Mathematica > AddOns > Applications

folder on your computer’s hard drive. The installation should look something like Fig. 1.

BB

|

0 =] npplications

2 items, 3 GB available

B 8§

mathStat icﬁ.m mathStatica

Fig. 1: Typical installation of mathStatica

Step 3: Get a password

To use mathStatica, you will need a password. To get a password, you will need to
register your copy of mathStatica at the following web site:

www.mathstatica.com

mathStatica is available in two versions: Basic and Gold. The differences are summarised
in Table 1; for full details, see the web site.
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class description

Basic * Fully functional mathStatica package code
¢ Included on the CD-ROM
* FREE to buyers of this book
* Single-use license

Gold ¢ All the benefits of Basic, plus ...
¢ Continuous and Discrete Distribution Palettes
* Detailed interactive HELP system
* Upgrades
* Technical support
e and more ...

Table 1: mathStatica—Basic and Gold

Once you have registered your copy, you will be sent a password file called: pass . txt.
Put this file into the Mathematica > AddOns > Applications > mathStatica
> Password directory, as shown in Fig. 2.

mathStatica
8 items, 3.5 GB available
Code Palettes Data Animata
Book Documentation Footnote
B D = G Password == E
]

1 item, 3.5 GB available

&

pass.txi

[+
NK

dl

Fig. 2: Once you have received "pass. txt", put it into the Password folder

Step 4: Run Mathematica, go to its HELP menu, and select: “Rebuild Help Index”

That’s it—all done. Your installation is now complete.
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1.2B Loading mathStatica

If everything is installed correctly, first start up Mathematica Version 4 or later. Then
mathStatica can be loaded by evaluating:

<< mathStatica.m

or by clicking on a button such as this one: ~ Start mathStatica

The Book palette should then appear, as shown in Fig. 3 (right panel). The Book palette
provides a quick and easy way to access the electronic version of this book, including the
live hyperlinked index. If you have purchased the Gold version of mathStatica, then the
mathStatica palette will also appear, as shown in Fig. 3 (left panel). This provides the
Continuous and Discrete distribution palettes (covering 37 distributions), as well as
the detailed mathStatica Help system (complete with hundreds of extra examples).

| e Contents
Continuous 2|3
Discrete 6|7

Help 1011

Fig. 3: The mathStatica palette (left) and the Book palette (right)

WARNING: To avoid so-called ‘context’ problems, mathStatica should always be loaded
from a fresh Mathematica kernel. If you have already done some calculations in
Mathematica, you can get a fresh kernel by either typing Quit in an Input cell, or by
selecting Kernel Menu > Quit Kernel.

1.2C Help
Both Basic Help and Detailed Help are available for any mathStatica function:

(i) Basic Help is shown in Table 2.

function description

? Name show information on Name

Table 2: Basic Help on function names

For example, to get Basic Help on the mathStatica function CentralToRaw, enter:

? CentralToRaw

CentralToRaw[r] expresses the rth central

. ’ .
moment uy in terms of raw moments ;. To obtain a
multivariate conversion, let r be a list of integers.

(ii) Detailed Help (Gold version only) is available via the mathStatica palette (Fig. 3 ).
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I 1.3 Core Functions

1.3 A Getting Started

mathStatica adds about 100 new functions to Mathematica. But most of the time, we can
get by with just four of them:

function description

PlotDensity|[ f ] Plotting (automated)

Expect [x, f ] Expectation operator  E[X]
Prob[x, f] Probability PX <x)
Transform[egn, f ] Transformations

Table 3: Core functions for a random variable X with density f(x)

This ability to handle plotting, expectations, probability, and transformations, with just
four functions, makes the mathStatica system very easy to use, even for those not familiar
with Mathematica.

To illustrate, let us suppose the continuous random variable X has probability density
function (pdf)

1
(x) = —————, forxe (0, 1).
0= Vs
In Mathematica, we enter this as:
1
f=z=—"—3; domain[f] = {x, 0, 1};

7'("\/1—8'\/;

This is known as the Arc—Sine distribution. Here is a plot of f(x):

PlotDensity[£f];

0.2 0.4 0.6 0.8 1

Fig. 4: The Arc—Sine pdf
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Here is the cumulative distribution function (cdf), P(X < x), which also provides the clue
to the naming of this distribution:

Prob[x, f]

2 Arcsin[\/;}

Tt

The mean, E[X], is:

Expect [x, f]

1

2

while the variance of X is:

Var[x, f]

1

8

The ™ moment of X is E[X"]:

Expect [x", £]
— This further assumes that: {r > —A}

I+ +r]

N TIL+ 1]

Now consider the transformation to a new random variable Y such that ¥ = VX . By
using the Transform and TransformExtremum functions, the pdf of Y, say g(y), and
the domain of its support can be found:

g = Transform[y = Vx, f]
2y

mAly? - y4

domain[g] = TransformExtremum [y == ‘\/x, f]
{v, 0, 1}

So, we have started out with a quite arbitrary pdf f(x), transformed it to a new one g(y),
and since both density g and its domain have been entered into Mathematica, we can
also apply the mathStatica tool set to density g. For example, use PlotDensity[g] to
plot the pdf of ¥ = VX.
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1.3 B Working with Parameters ( Assumptions technology ¢')

mathStatica has been designed to seamlessly support parameters. It does so by taking full
advantage of the new Assumptions technology introduced in Version 4 of Mathematica,
which enables us to make assumptions about parameters. To illustrate, let us consider the
familiar Normal distribution with mean p and variance o. That is, let X ~ N(u, 0%),
where 1 € R and o > 0. We enter the pdf f(x) in the standard way, but this time we have
some extra information about the parameters 1 and 0. We use the And function, &&, to
add these assumptions to the end of the domain[£] statement:

_ 2
P S I

oV2rn 2 o? ];

domain[£f] {x, -, o} && {4 € Reals, o> 0};

From now on, the assumptions about p and o will be ‘attached’ to density f, so that
whenever we operate on density f with a mathStatica function, these assumptions will be
applied automatically in the background. With this new technology, mathStatica can
usually produce remarkably crisp textbook-style answers, even when working with very
complicated distributions.

The mathStatica function, PlotDensity, makes it easy to examine the effect of
changing parameter values. The following input reads: “Plot density f(x) when  is 0, and
o is 1, 2 and 3”. For more detail on using the /. operator, see Wolfram (1999, Section
2.4.1).

PlotDensity[f /. {u->0, o- {1, 2, 3}}];

Fig. 5: The pdf of a Normal random variable, when ¢t =0 and o = 1(—), 2(—), 3(- — -)
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It is well known that E[X] = 1 and Var(X) = 2, as we can easily verify:

Expect [x, f]
U

Var[x, f]

0.2

Because mathStatica is general in its design, we can just as easily solve problems that are
both less well-known and more “difficult’, such as finding Var(X?):

Var[x?, f]
2 (2 p? 0% +0%)

Assumptions technology is a very important addition to Mathematica. In order for it
to work, one should enter as much information about parameters as possible. The resulting
answer will be much neater, it may also be obtained faster, and it may make it possible to
solve problems that could not otherwise be solved. Here is an example of some
Assumptions statements:

{a>1, B e€Integers, -o<y<n, Ob6€Reals, 6>0}

mathStatica implements Assumptions technology in a distribution-specific manner. This
means the assumptions are attached to the density f(x; 8) and not to the parameter 6. What
if we have two distributions, both using the same parameter? No problem ... suppose the
two pdf’s are

6y fx; 0) 6>0

(ii) g(x; 0) <0

Then, when we work with density f, mathStatica will assume 6 > 0; when we work with
density g, it will assume 6 < 0. For example,

@) Expect [x, f] will assume 6 > 0

(i1) Prob[x, g] will assume 6 < 0

It is important to realise that the assumptions will only be automatically invoked when

using the suite of mathStatica functions. By contrast, Mathematica’s built-in functions,
such as the derivative function, D [f, x], will not automatically assume that 8 > 0.

1.3 C Discrete Random Variables

mathStatica automatically handles discrete random variables in the same way. The only
difference is that, when we define the density, we add a flag to tell Mathematica that the
random variable is {Discrete}. To illustrate, let the discrete random variable X have
probability mass function (pmf)

fx) = PX=x) =

+x-1
(ri )p’(l—p)x, forxe{0,1,2, ...}
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Here, parameter p is the probability of success, while parameter r is a positive integer. In
Mathematica, we enter this as:

£

Binomial[r+x-1, x] p° (1-p)*;
domain[f] = {x, 0, } && {Discrete} &&
{0<p<1l, r>0, r € Integers} ;

This is known as the Pascal distribution. Here is a plot of f(x):

] 1
PlotDens:Lty[f /. {p - —2-, r- 10}] ;

f
o0
) [ ]
0.08 [ )
[ ]
[ ]
0.06 + ® Y
[ ]
0.04 | * °
[ ]
* [ ]
0.02 °
[ ] [ °
° %
L 900aa X
5 10 15 20 25

Fig. 6: The pmf of a Pascal discrete random variable

Here is the cdf, equal to P(X < x):

Prob[x, f]

1
"~ T'[r] T'[2 + Floor [x]]
((1-p)*FLoor®] p* 7 [1 4+ r + Floor [x] ] Hypergeometric2F1 |
1, 1+r+Floor[x], 2+ Floor[x], 1-p])

The mean E[X] and variance of X are given by:
Expect [x, f]
(71 + i) r
b

Var[x, f]

r-pr
D2
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The probability generating function (pgf) is E[+X]:
Expect [t*, £]
p* (1+ (-1+p)t) "

For more detail on discrete random variables, see Chapter 3.

1.3 D Multivariate Random Variables
mathStatica extends naturally to a multivariate setting. To illustrate, let us suppose that X
and Y have joint pdf f(x, y) with support x > 0,y > 0:

£ = 2™V (e +a(e"-2) (eV-2));

domain|[f] {{x, 0, «}, {y, 0, ©}} && {-l<a<1l};

where parameter « is such that —1 <a < 1. This is known as a Gumbel bivariate
Exponential distribution. Here is a plot of f(x, y). To display the code that generates this
plot, simply click on the > adjacent to Fig.7 in the electronic version of this chapter.
Clicking the ‘View Animation’ button in the electronic notebook brings up an animation
of f(x, y), allowing parameter « to vary from —1 to O in step sizes of 1/20. This provides
a rather neat way to visualise how the shape of the joint pdf changes with @. In the printed
text, the symbol ﬁ indicates that an animation is available.

Fig. 7: A Gumbel bivariate Exponential pdf when & = —0.8 ﬁ
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Here is the cdf, namely P(X < x, Y < y):

Prob[{x, v}, f]
e? Y (~14+e¥) (-1+eY) (e +a)

Here is Cov(X, Y), the covariance between X and Y:

Cov[{x, v}, £f]

a

4

More generally, here is the variance-covariance matrix:

Varcov|[f]

l%]

Here is the marginal pdf of X:

Marginal [x, £f]

-X

e
Here is the conditional pdf of Y, given X = x:

Conditional[y, f]
— Here is the conditional pdf f (y ’ X ):

e (XY (XY 4 (L2 4 e®) (-2 +eY) a)
Here is the bivariate mgf E[e" X +2 Y]:

mgf = Expect[ e®f:**%2¥,k f]
— This further assumes that: {t; <1, t; <1}

4-2ty+t; (-2+ (L+a) ts)
(-2+t1) (-1+t1) (-2+t3) (-1+¢ts)

Differentiating the mgf is one way to derive moments. Here is the product moment
E[X* Y?]:

D[mgf, {t,, 2}, {t2, 2}] /. t_ > 0 // Simplify

9 a

4
T2
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which we could otherwise have found directly with:

Expect [x? v?, f]

9 a

4
T2

Multivariate transformations pose no problem to mathStatica either. For instance, let
U= % and V = ﬁ denote transformations of X and Y. Then our transformation
equation is:

Yy 1
eqgn = {u== s Vo=
1l+x 1l+x

}s

Using Transform, we can find the joint pdf of random variables U and V, denoted
gu, v):

g = Transform[eqgn, f]

2-2u+v u+v 1l+u

e v (4@0(72«3% a-2e vV a+e v (l+0())

3
while the extremum of the domain of support of the new random variables are:

TransformExtremum [eqn, f]

{{u, 0, e}, {v, 0, 1}}

For more detail on multivariate random variables, see Chapter 6.

1.3 E Piecewise Distributions

Some density functions take a bipartite form. To illustrate, let us suppose X is a
continuous random variable, 0 < x < 1, with pdf

2(=) ifx<ec

2(5)  ifx=c

l-c

fx) = {

where 0 < ¢ < 1. We enter this as:

c-x Xx-cC
£ = If[x<c, 2 ;2 K,

c l-c¢c

domain[f] = {x, 0, 1} && {0<c<1};

This is known as the Inverse Triangular distribution, as is clear from a plot of f(x), as
illustrated in Fig. 8.
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PlotDensity[f /. c—»{i—, %, %}],

0.2 0.4 0.6 0.8 1

Fig. 8: The Inverse Triangular pdf, when ¢ = %(—), %(—), %(— --)
Here is the cdf, P(X < x):

Prob[x, f]

c-2cx+x?
If[x<c, x (27A), T—}
Note that the solution depends on whether x < ¢ or x = c. Figure 9 plots the cdf at the same
three values of ¢ used in Fig. 8.

F
1
7
08 t - Y
— —_
—
_ ~
0.6 | P
e
Ve
Ve
04 | s
z
y
/
0.2 t
: : : : — X
0.2 0.4 0.6 0.8 1

Fig. 9: The Inverse Triangular cdf, when ¢ = %(—), %(—), %(— - )
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mathStatica operates on bipartite distributions in the standard way. For instance, the
mean E[X] is given by:
Expect [x, f]

2-cC
3

while the entropy is given by E[—log(f(X))]:
Expect[-Log[f], f£f]

5 - Tog[2]

I 1.4 Some Specialised Functions

@ Example 1: Moment Conversion Functions

mathStatica allows one to express any moment (raw L1, central 1, or cumulant X) in terms
of any other moment ({1, u, or x). For instance, to express the second central moment (the
variance) (i, = E [(X — E[X] )2] in terms of raw moments, we enter:

CentralToRaw[2]

X ,
Mo — —Hqy + Uy

This is just the well-known result that i, = E [X2] = (E[X])*. As a further example, here is
the sixth cumulant expressed in terms of raw moments:

CumulantToRaw |[6]
, 6 4, ;2,2 /3 /3
Ke > =120 pq +360 pg pty =270 pg iy +30 py =120 g pig +
ror ;2 ;2 ;o ;o ’
120 pg pg g =10 g + 30 pg g = 15y py — 6 g g + g
The moment converter functions are completely general, and extend in the natural

manner to a multivariate framework. Here is the bivariate central moment (i, ; expressed
in terms of bivariate cumulants:

CentralToCumulant [ {2, 3}]

H2,3 > 6 Ky,1 K1,2 +Ko,3 Ka,0 +3 Ko,2 Kz,1 +Kz,3

For more detail, see Chapter 2 (univariate) and Chapter 6 (multivariate). |
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@ Example 2: Pseudo-Random Number Generation

Let X be any discrete random variable with probability mass function (pmf) f(x). Then,
the mathStatica function DiscreteRNG [n, f ] generates n pseudo-random copies of X.
To illustrate, let us suppose X ~ Poisson(6):

-A X

f = /. A>6; domain[f] = {x, 0, «} && {Discrete};

x!

As usual, domain[f] must always be entered along with £, as it passes important
information onto DiscreteRNG. Here are 30 copies of X:

DiscreteRNG[30, f]

{10, 4,8, 3,5,6,3,2,9,6,3,5,6,5,
5,4,3,5,3,8,2,3,6,5,3,10, 8,5, 8,5}

Here, in a fraction of a second, are 50000 more copies of X:

data = DiscreteRNG[50000, £]; // Timing

{0.39 Second, Null}

DiscreteRNG is not only completely general, but it is also very efficient. We now
contrast the empirical distribution of data with the true distribution of X:

FrequencyPlotDiscrete [data, £f]:;

f

0.15 |
0.125 |

0.1 | o
0.075 |
0.05 |

0.025 | e

5 10 15

Fig. 10: The empirical pmf (a) and true pmf (o)

The triangular dots denote the empirical pmf, while the round dots denote the true density
f(x). One obtains a superb fit because DiscreteRNG is an exact solution. This may
make it difficult to distinguish the triangles from the round dots. For more detail, see
Chapter 3. ]
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@ Example 3: Pearson Fitting

Karl Pearson showed that if we know the first four moments of a distribution, we can
construct a density function that is consistent with those moments. This can provide a neat
way to build density functions that approximate a given set of data. For instance, for a
given data set, let us suppose that:

mean = 37.875;
fyss = {191.55, 1888.36, 107703.3};

denoting estimates of the mean, and of the second, third and fourth central moments. The
Pearson family consists of 7 main Types, so our first task is to find out which type this
data is consistent with. We do this with the PearsonPlot function:

PearsonPlot [{i,;,];

{B1 - 0.507368, B2 — 2.93538}

0.3 0.6 0.9 1.2 1.5 1.8

Bi
Fig. 11: The B, B, chart for the Pearson system

The big black dot in Fig. 11 is in the Type I zone. Then, the fitted Pearson density f(x) and
its domain are immediately given by:

{f, domain[f]} = PearsonI[mean, [i,;,, X]

{9.62522x10°° (94.3127 - 1. x)*" 7"
(-16.8709 + 1. x) 2 %%72% | (x, 16.8709, 94.3127}}

The actual data used to create this example is grouped data (see Example 3 of Chapter 5)
depicting the number of sick people (freq) at different ages (X):
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X
freq

{17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87};
{34, 145, 156, 145, 123, 103, 86, 71, 55, 37, 21, 13, 7, 3, 1};

We can easily compare the histogram of the empirical data with our fitted Pearson pdf:

FrequencyGroupPlot [ {X, freq}, £f]:;

0.03 [ /|:|\

0.025 |

0.02 +

f o015 | E

0.01 |

0.005

A e

20 40 60 80
X

Fig. 12: The data histogram and the fitted Pearson pdf

Related topics include Gram—Charlier expansions, and the Johnson family of distributions.
For more detail, see Chapter 5. | |

@ Example 4: Fisher Information

The Fisher Information on a parameter can be constructed from first principles using the
Expect function. Alternatively, we can use mathStatica’s FisherInformation
function, which automates this calculation. To illustrate, let X ~ InverseGaussian(u, A)
with pdf f(x):

2 (X—u)z].

£ Exp[—)t

2 u? x
{x, 0, <} && {u >0, A>0};

2 7t x3

domain[£f]

Then, Fisher’s Information on (11, A) is the (2x2) matrix:

FisherInformation|[{u, A}, £f]

0

1

A
3
0 2 A2

For more detail on Fisher Information, see Chapter 10. [ |
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@ Example 5: Non-Parametric Kernel Density Estimation

Here is some raw data measuring the diagonal length of 100 forged Swiss bank notes and
100 real Swiss bank notes (Simonoff, 1996):

data = ReadList["sd.dat"];

Non-parametric kernel density estimation involves two components: (i) the choice of a
kernel, and (ii) the selection of a bandwidth. Here we use a Gaussian kernel f:

2

Tz

e
f = ; domain[£f] = {x, -oo, };

Var

Next, we select the bandwidth c¢. Small values for ¢ produce a rough estimate while large
values produce a very smooth estimate. A number of methods exist to automate bandwidth
choice; mathStatica implements both the Silverman (1986) approach and the more
sophisticated Sheather and Jones (1991) method. For the Swiss bank note data set, the
Sheather—Jones optimal bandwidth (using the Gaussian kernel f) is:

c = Bandwidth[data, £, Method -» SheatherJones]

0.200059

We can now plot the smoothed non-parametric kernel density estimate using the
NPKDEPlot [data, kernel, ¢] function:

NPKDEPlot [data, £, c];

0.4

0.3

0.2

0.1

-

139 140 141 142

Fig. 13: The smoothed non-parametric kernel density estimate (Swiss bank notes)

For more detail, see Chapter 5. | |
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@ Example 6: Unbiased Estimation of Population Moments; Moments of Moments

mathStatica can find unbiased estimators of population moments. For instance, it offers h-
statistics (unbiased estimators of population central moments), k-statistics (unbiased
estimators of population cumulants), multivariate varieties of the same, polykays
(unbiased estimators of products of cumulants) and more. Consider the k-statistic k, which
is an unbiased estimator of the 7™ cumulant x,; that is, E[k,] = x,, for r =1, 2, ... . Here
are the 2™ are 3™ Kk-statistics:

k2
k3

KStatistic[2]
KStatistic[3]

2
-s?+ns

ky > —1 = -22
(-1+n)n

2s3-3ns;s; +n? s3

N> —Z ) (ciro)n

As per convention, the solution is expressed in terms of power sums s, = >,;_; X/ .

Moments of moments: Because the above expressions (sample moments) are
functions of random variables X;, we might want to calculate population moments of
them. With mathStatica, we can find any moment (raw, central, or cumulant) of the
above expressions. For instance, k3 is meant to have the property that E[k; ] = x3. We test
this by calculating the first raw moment of kj, and express the answer in terms of
cumulants:

RawMomentToCumulant [1, k3[2]]

K3

In 1928, Fisher published the product cumulants of the k-statistics, which are now
listed in reference bibles such as Stuart and Ord (1994). Here is the solution to

K2,2(ks, ka):

CumulantMomentToCumulant [ {2, 2}, {k3[2], k2[2]}]

288 nx3 . 288 (-23 +10n) x3 x3 . 360 (-7 +4n) K3 Ky .
(-2+n) (-1+n)° (-2+n) (-1+n)’ (-2+n) (-1+n)’
36 (160 -155n+38n%) x3 ks 36 (93 -103n+29n?) x; K

(-2+n) (-1+n)°n (-2+n) (-1+n)°n
24 (202 -246n+71n%) Ky K3 Ks 2 (113 -154n +59n?) x?
(—2+1) (-1+m)°n B (—1+m)° n?
6 (-131+67n) K2 K¢ L3 (117 - 166n + 61 n?) k4 K¢ .
(-2+n) (-1+n)%n (-1 +n)° n2

6 (-27+17n) K3 Ky 37 Ky Kg K10
2 + > T3
(-1 +n)? n2 (-1+n)n n

This is the correct solution. Unfortunately, the solutions given in Stuart and Ord (1994,
equation (12.70)) and Fisher (1928) are actually incorrect (see Example 14 of Chapter 7). B
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@ Example 7: Symbolic Maximum Likelihood Estimation

Although statistical software has long been used for maximum likelihood (ML)
estimation, the focus of attention has almost always been on obtaining ML estimates (a
numerical problem), rather than on deriving ML estimators (a symbolic problem).
mathStatica makes it possible to derive exact symbolic ML estimators from first
principles with a computer algebra system.

For instance, consider the following simple problem: let (Xi, ..., X,) denote a
random sample of size n collected on X ~ Rayleigh(o), where parameter o >0 is
unknown. We wish to find the ML estimator of 0. We begin in the usual way by inputting
the likelihood function into Mathematica:

n

%, x?
< | [Seel gl

i=1

If we try to evaluate the log-likelihood:

Log[L]
n 2
e 77 Xi
Log[| | S22
i=1

. nothing happens! (Mathematica assumes nothing about the symbols that have been
entered, so its inaction is perfectly reasonable.) But we can enhance Log to do what is
wanted here using the mathStatica function SuperLog. To activate this enhancement,
we switch it on:

SuperLog [On]

— SuperLog is now On.

If we now evaluate Log [L] again, we obtain a much more useful result:

logL = Log[L]

n 2
Zj_:j_ Xy

n
-2nLog[o] +ZL09[Xi] T o o2
i

To derive the first-order conditions for a maximum:

FOC = D[logL, O]

n 2
2 n i Zi:l Xj_
o o3
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... we solve FOC==0 using Mathematica’s Solve function. The ML estimator & is given
as a replacement rule — for o:

6 = Solve [FOC == 0, o] [2]

n 2
Zi:1 X3

o)

{o-

The second-order conditions (evaluated at the first-order conditions) are always negative,
which confirms that & is indeed the ML estimator:

soc =D[logL, {0, 2}] /. G

8 n?

n 2
Zj_:j_ X3

Finally, let us suppose that an observed random sample is {1, 6, 3, 4}:
data = {1, 6, 3, 4};
Then the ML estimate of o is obtained by substituting this data into the ML estimator 6-:

G/.{n->4, x; :> data[i]}

Figure 14 plots the observed likelihood (for the given data) against values of o, noting the

N

derived exact optimal solution - = =5

0.00035 |
0.0003 |
0.00025 |
0.0002 |
0.00015 |
0.0001 |

0.00005 |

Fig. 14: The observed likelihood and &
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Before continuing, we return Log to its default condition:

SuperLog [Off]

— SuperLog is now Off.

For more detail, see Chapter 11. | |

@ Example 8: Order Statistics

Let random variable X have a Logistic distribution with pdf f(x):

e ¥
f= ———; domain[£f] = {x, -0, o};
(L+rex)?

Let (X;, X2, ..., X,;) denote a sample of size n drawn on X, and let (X, X2), ..., X())
denote the ordered sample, so that Xy < X2) < -- < X(,. The pdf of the r™ order
statistic, X(,), is given by the mathStatica function:

OrdersStat [r, f]

(L+e™*) ™ (1+e*) ™ ni
(n-r)! (-1+1x)!

The joint pdf of X,y and X(,), for r < s, is given by:

Orderstat [{r, s}, f]

-r+s

€% (l+e®) F (l+eXs) 1S (L _ 1 T[1l+n]

1+eXr l+e*s

(-e* +eX ) T[r]T[l+n-s]IT'[-r+s]

The OrderStat function also supports piecewise pdf’s. For example, let random
variable X ~ Laplace(u, o) with pdf f(x):

ex;u e'xo;u ]

20 20 !

£

If[x<u,

domain[£f] = {x, -, ~} && {u € Reals, o> 0};

Then, the pdf of the »™ order statistic, X, 18t

OrdersStat [r, f]

r x-p DT 1+n-x) (-X+u) X+U 1l+r

27e s (l-+e%) n! 2'e oo (1-+e% ) n!
o(n-xr)! (-1+r)! ! o(n-r)! (-1+r)! ]

If[x<u,

The textbook reference solution, given in Johnson et al. (1995, p.168), is alas incorrect.
For more detail on order statistics, see Chapter 9. | |
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I 1.5 Notation and Conventions

1.5 A Introduction

This book brings together two conceptually different worlds: on the one hand, the
statistics literature has a set of norms and conventions, while on the other hand
Mathematica has its own (and different) norms and conventions for symbol entry,
typefaces and notation. For instance, Table 4 describes the different conventions for upper
and lower case letters, say X and x:

Statistics X denotes a random variable,
x denotes a realisation of that random variable, suchasx = 3.

Mathematica Since Mathematica is case-specific, X and x are interpreted as
completely different symbols, just as differentasyisto z.

Table 4: Upper and lower case conventions

While one could try to artificially fuse these disparate worlds together, the end solution
would most likely be a forced, unnatural and ultimately irritating experience. Instead, the
approach we have adopted is to keep the two worlds separate, in the obvious way:

e In Text cells: standard statistics notation is used.

e In Input cells: standard Mathematica notation is used.

Thus, the Text of this book reads exactly like a standard mathematical statistics text. For
instance,

“Let X have pdf f(x) = %h(x) xeR. Find E[X?].”

By contrast, the computer Input for the same problem follows Mathematica conventions,
so lower case x is used throughout (no capital X), functions use square brackets (not round
ones), and the names of mathematical functions are capitalised so that sech(x) becomes
Sech[x]:

Sech[x] . 2
= ——; domain|[f] = {x, -, ©}; Expect[x®, f]
7

bl
4

If it is necessary to use Mathematica notation in the main text, this is indicated by
using Courier font. This section summarises these notational conventions in both
statistics (Part B) and Mathematica (Part C). Related material includes Appendices A.3 to
A.8.
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1.5 B Statistics Notation

abbreviation

description

cdf

cf

cgf
Cov(X;, X))
E[X]

iid

mgf
mgfc
M(1)
MLE
MSE
N(u, ?)
pdf

pef

pmf

I1(z)

P(X < x)
Var(X)
Varcov()

cumulative distribution function
characteristic function

cumulant generating function
covariance of X; and X;

the expectation of X

independent and identically distributed
moment generating function

central mgf

mgf: M(t) = E[e’X]

maximum likelihood estimator

mean square error

Normal distribution with mean . and variance o2

probability density function
probability generating function
probability mass function

pef: T(r) = E[*]
probability

the variance of X

the variance-covariance matrix

Table 5: Abbreviations

symbol  description

R set of real numbers

R? two-dimensional real plane
R, set of positive real numbers
X X=X, Xa, ..., Xp)

z summation operator

I1 product operator

d total derivative

0 partial derivative

log(x) natural logarithm of x

HT transpose of matrix H

( n ) Binomial coefficient

Table 6: Sets and operators

25
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symbol description

U the population mean (same as [ 1)

G, r™ raw moment L, = E[X"]

U, r central moment u, = E[X -]

Xy r™ cumulant

g multivariate raw moment [, = E[X] X5]

Uy g multivariate central moment 1, (= E [(X1 -E[Xi]) (X, — E[Xz])s]
Kr.s multivariate cumulant

[[r] r factorial moment

Llr, s] multivariate factorial moments

B Pearson skewness measure is \/ E—, where () = u% / ug
Bo Pearson kurtosis measure Bo= 1,/ u%
p success probability in Bernoulli trials

p or p; correlation between two random variables

Sy power sums s, = ZLI X!

m, sample raw moments m, = % ZLI X!

m, sample central moments m, = % ZLI (X,- - rhl)r

S, sample sum, for a sample of size n (same as ;)

X, the sample mean, for a sample of size n (same as m; )

0 population parameter

o estimate or estimator of 6

h, h-statistic: Efh,] =,

k, k-statistic : E[k, ] = x,

ip Fisher Information on parameter 6

Iy Sample Information on parameter 6

~ distributed as; e.g. X ~ Chi-squared(n)

2 asymptotically distributed

R convergence in distribution

2 convergence in probability

Table 7: Statistics notation
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1.5C Mathematica Notation

Common: Table 8 lists common Mathematica expressions.

¢ Note that = denotes the key.
* Mathematica only understands that T'[x] is equal to Gamma [x] if mathStatica
has been loaded (see Appendix A.8).

27

expression description short cut

n Pi p:

o0 Infinity sinf:

i V-1 sid:

e e or Exp[x] ee:

r ['[x] = Gamma [x] -G:

IS Element : {x € Reals} elem:
lis[4] Part 4 of lis [z or [[
Binomial [n, r] Binomial coefficient : (’;)

Table 8: Mathematica notation (common)

Brackets: In Mathematica, each kind of bracket has a very specific meaning. Table 9 lists
the four main types.

bracket description example

0 Lists lis = {1, 2, 3, 4)

[] Functions v = Exp [x] not Exp (x)

0) Grouping (vix+2)H* not  fy (x+2)%"
lis[4] Part4 of 1is A or [

Table 9: Mathematica bracketing

Replacements: Table 10 lists notation for making replacements; see also Wolfram (1999,

Section 2.4.1). Note that > is entered as : > and not as : ->. Example:
32 /. x> 0
3 62
operator  description short cut
/. ReplaceAll
- Rule I—=>: or —>
- RuleDelayed > or >

Table 10: Mathematica replacements
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Greek alphabet (common):

letter short cut name

a ca: alpha
B :b: beta

y, T :g=, G gamma
0, A d: , :Ds: delta
£ =ce: epsilon
0, © q:, Qs theta
K k: kappa
A, A Az, iL lambda
H :m: mu

& xX: xi

n p: pi

P = rho

o, X st , =S: sigma
¢, @ f:, <F: phi

X c: chi

vy, ¥ y:, fY: psi

w, wo, tW: omega

Table 11: Greek alphabet (common)

Notation entry: Mathematica’s sophisticated typesetting engine makes it possible to use
standard statistical notation such as X instead of typing xHAT, and x; instead of x1 (see
Appendix A.5). This makes the transition from paper to computer a much more natural,
intuitive and aesthetically pleasing experience. The disadvantage is that we have to learn
how to enter expressions like . One easy way is to use the BasicTypesetting palette,
which is available via File Menu > Palettes > BasicTypesetting. Alternatively, Table

12 lists five essential notation short cuts which are well worth mastering.

notation short cut

e x [/ oy
y

x" x [m]6 r
Xy X -1
2

X x [m]7 2
X X = 3
3

Table 12: Five essential notation short cuts
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These five notation types

X 2
PYE) -xrs X1, X, X
y 3

can generate almost any expression used in this book. For instance, the expression X has

2, . L
the same form as x in Table 12, so we can enter & with x [cR]7 A. If the expression is a
well-known notational type, Mathematica will represent it internally as a ‘special’
function. For instance, the internal representation of X is actually:

% // InputForm
OverHat [x]
Table 13 lists these special functions —they provide an alternative way to enter notation.

For instance, to enter X we could type in OverVector[x], then select the latter with the
mouse, and then choose Cell Menu > Convert to StandardForm. This too yields x.

notation  short cut function name

x* x [m]6 + SuperPlus [x]
X~ x [m]6 — SuperMinus [x]
x* X 6 SuperStar [x]
xt x [m]6 T SuperDagger [x]
Xy X [orR]- + SubPlus [x]

X_ x [m]- — SubMinus [x]

X, x [oR]— = SubStar [x]

x X 7 _ OverBar [x]

X X 7 :=vec: OverVector [x]
X x [m]7  ~ OverTilde [x]
X X 7 A OverHat [x]

X X 7 . OverDot [x]

X X = _ UnderBar [x]

Table 13: Special forms

Even more sophisticated structures can be created with Subsuperscript and
Underoverscript, as Table 14 shows.

notation function name

x4 Subsuperscript [x, 1, 7]
b .

X Underoverscript [x, a, b]
a

Table 14: Subsuperscript and Underoverscript
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Entering /lr: This text uses /lr to denote the r™ raw moment. The prime s above u is

entered by typing ' [escl. This is because the keyboard ' is reserved for other purposes by
Mathematica. Further, notation such as x’ (where the prime comes after the x, rather than
above it) should generally be avoided, as Mathematica may interpret the prime as a
derivative. This problem does not occur with X notation.

% // InputForm

Overscript[x, -]

x’" // InputForm

Derivative[1l] [x]

Animations: In the printed text, the symbol Wl is used to indicate that an animation is
available at the marked point in the electronic version of the chapter.

Magnification: If the on-screen notation seems too small, magnification can be used:
Format Menu > Magnification.

Notes: Here is an example of a note.! In the electronic version of the text, notes are live

links that can be activated with the mouse. In the printed text, notes are listed near the end
of the book in the Notes section.

Timings: All timings in this book are based on Mathematica Version 4 running on a PC
with an 850 MHz Pentium III processor.

Finally, the Appendix provides several tips for both the new and advanced user on
the accuracy of symbolic and numeric computation, on working with Lists, on using
Subscript notation, on working with matrices and vectors, on changes to default
behaviour, and on how to expand the mathStatica framework with your own functions.



