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Chapter 11

Principles of Maximum Likelihood Estimation

I 11.1  Introduction

11.1 A Review

The previous chapter concentrated on obtaining unbiased estimators for parameters. The
existence of unbiased estimators with minimum variance —the so-called MVUE class of
estimators —required the sufficient statistics of the statistical model to be complete.
Unfortunately, in practice, statistical models often falter in this respect. Therefore,
parameter estimators must be found from other sources. The suitability of estimators based
on large sample considerations such as consistency and limiting Normal distribution has
already been addressed, as has the selection of estimators based on small sample
properties dependent upon assumed loss structures. However, in both cases, the estimators
that arose did so in an ad-hoc fashion. Fortunately, in the absence of complete sufficient
statistics, there are other possibilities available. Of particular interest, here and in the
following chapter, is the method of Maximum Likelihood (ML). ML techniques provide a
way to generate parameter estimators that share some of the optimality properties,
principally asymptotic ones.

§11.2 introduces the likelihood function. §11.3 defines the Maximum Likelihood
Estimator (MLE) and shows how Mathematica can be used to determine its functional
form. §11.4 discusses the statistical properties of the estimator. From the viewpoint of
small sample sizes, the properties of the MLE depend very much on the particular
statistical model in question. However, from a large sample perspective, the properties of
the MLE are widely applicable and desirable: consistency, limiting Normal distribution
and asymptotic efficiency. Desirable asymptotic properties and functional invariance (the
Invariance Property) help to explain the popularity of ML in practice. §11.5 examines
further the asymptotic properties of the MLE, using regularity conditions to establish these.

The statistical literature on ML methods is extensive with many texts devoting at
least a chapter to the topic. The list of references that follow offers at least a sample of a
range of treatments. In rough order of decreasing technical difficulty are Lehmann (1983),
Amemiya (1985), Dhrymes (1970), Silvey (1975), Cox and Hinkley (1974), Stuart and
Ord (1991), Gourieroux and Monfort (1995), Cramer (1986), McCabe and Tremayne
(1993), Nerlove (2002), Mittelhammer (1996) and Hogg and Craig (1995). Currie (1995)
gives numerical examples of computation of ML estimates using Version 2 of
Mathematica, while Rose and Smith (2000) discuss computation under Version 4.
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11.1 B SuperLog

Before embarking, we need to activate the mathStatica function SuperLog. This tool
enhances Mathematica’s ability to simplify Log[Product[]] expressions. For
instance, consider the following expression:

n
f=ﬂ(1-e)1'xi o™ ; Log[£]

i=1
n
Log[ﬂ (1-6)t™ g% |
i=1
Mathematica has not simplified Log [ £] at all. However, if we turn SuperLog on:
SuperLog [On]

— SuperLog is now On.
and try again:

Log[£]

nLog[l-6] + (-Log[1l-6] + Log[6]) in
i=1

we obtain a significant improvement on Mathematica’s previous effort. SuperLog is part
of the mathStatica suite. It modifies Mathematica’s Log function so that
Log[Product []] ‘objects’ or ‘terms’ get converted into sums of logarithms. At any
stage, this enhancement may be removed by entering SuperLog [Off].

I 11.2  The Likelihood Function

In this section, we define the likelihood function and illustrate its construction in a variety
of settings. To establish notation, let X denote the variable(s) of interest that has (or is
assumed to have) a pdf f(x; 6) dependent upon a (kx 1) parameter § € @ c R* whose true
value 6, is unknown; we assume that the functional form of f is known. Next, we let
(X1, ..., X;;) denote a random sample of size n drawn on X. It is assumed that the pdf of
the random sample f; ., (x, ..., x,; 8) can be derived from the knowledge we have about
f, and hence that the joint density depends on the unknown parameter 6. A key point is
that the likelihood function is mathematically equivalent to the joint distribution of the
sample. Instead of regarding it as a function of the X;, the likelihood is interpreted as a
function of 8 defined over the parameter space ® for fixed values of each X; = x;. The
likelihood for 6 is thus

LO|x1, oo ) = fi, a1, o, X5 0). (11.1)

Often, we will shorten the notation for the likelihood to just L(6). Construction of the joint
pdf may at first sight seem a daunting task. However, if the variables in (X1, ..., X,,) are
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mutually independent, then the joint pdf is given by the product of the marginals,

Fon@r, %03 0) = [] £xi50) (11.2)
i=1

which usually makes it easy to construct the joint pdf and hence the likelihood for 6.

We often need to distinguish between two forms of the likelihood for 6, namely, the
likelihood function, and the observed likelihood. The likelihood function is defined as the
likelihood for 6 given the random sample prior to observation; it is given by
L9 | Xi, ..., X)), and is a random variable. Where there is no possibility of confusion, we
use ‘likelihood’ and ‘likelihood function’ interchangeably. The second form, the observed
likelihood, is defined as the likelihood for # evaluated for a given sample of observed data,
and it is not random. The following examples illustrate the construction of the likelihood,
and its observed counterpart.

@ Example 1: The Likelihood and Observed Likelihood for an Exponential Model

Let random variable X ~ Exponential(6), with pdf:
1
£ = 5 e®%; domain[f] = {x, 0, «} && {6 > 0};

Let (X, ..., X,,) denote a random sample of size n collected on X. Then, the likelihood for
0 is equivalent to the joint pdf of the random sample (11.1), and as (X, ..., X,,) are
mutually independent, then it can be constructed as per (11.2):

L@:ﬂ(f/.x-»xi)

i=1

Given a random sample of size n = 4 on X, let us suppose that the observed data are:
data = {1, 2, 1, 4};

There are two main methods to construct the observed likelihood for 6:

Method 1: Substitute the data into the likelihood:

L6 /. {n- Length[data], x; :» data[i]}

678/6

64

Note the use of delayed replacement :»> (which is entered as :>). By contrast, immediate
replacement — (which is entered as ->) would fail.
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Method 2: Substitute the data into the density:

Times @@ (£ /. x » data)

(978/6

64

Here, the immediate replacement £ /. x - data yields a list of empirical densities
{f(1;0), f(2;0), f(1;0), f(4; 0)}. The observed likelihood for 6 is obtained by multiplying
the elements of the list together using Times (the @@ is ‘shorthand’ for the Apply
function). u

@ Example 2: The Likelihood and Observed Likelihood for a Bernoulli Model
Now suppose that X is discrete, and, in particular, that X ~ Bernoulli(6):

o* (1_6)1—1{;
{%x, 0, 1} && {0 <6< 1} && {Discrete};

£
domain[£f]

where 0 <6 < 1. For (X, ..., X,,), a random sample of size n drawn on X, the likelihood
for 6 is equivalent to the joint pmf of the random sample (11.1), and as (Xi, ..., X,,) are
mutually independent, it can be constructed as per (11.2):

L@:ﬂ(f/.x-»xi)

i=1
n
ﬂ (1-0)l™= g&
i=1
Suppose that observations were recorded as follows:

data={1,1,0,1,0,0, 1, 1, 0};

We again construct the observed likelihood using our two methods:

Method 1: Substitute the data into the likelihood:

n (£/.x-x;) /. {n-Length[data], x; = data[i]}

i=1

(1-6)*6°
Method 2: Substitute the data into the pmf:

Times @@ (£ /. x » data)

(1-0)*0°
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@ Example 3: The Likelihood and Observed Likelihood for a Latent Variable Model

There are many instances where care is needed in deriving the likelihood. One important
situation is when the variable of interest is latent (meaning that it cannot be observed), but
a variable that is functionally related to it can be observed. To construct the likelihood for
the parameters in a statistical model for a latent variable, we need to know the function (or
the sampling scheme) that relates the observable variable to the latent variable.

Let X be the examination mark of a student in percent; thus X = x € [0, 100].
Suppose that the mark is only revealed to us if the exam is passed; that is, X is disclosed
provided X = 50. On the other hand, if the student fails the exam, then we receive a datum
of 0 (say) and know only that X <50. Thus, X is only partially observed by us and
therefore it is latent. Let Y denote the observed variable, which is related to X by

Y = { X %f X €[50, 100] (11.3)
0 if X € [0, 50).

We propose to model X with the (scaled) Beta distribution, X ~ 100 xBeta(a, ). Let
f(x; ) denote the statistical model for X:

a-1 x b-1

(to5) (1-555)

100 Beta[a, b]

domain[£f] = {x, 0, 100} && {a> 0, b > 0};

Although we cannot fully observe X, it is still possible to elicit information about the
parameter 6 =(a, b), as the relationship linking X to Y is known. Thus, given the
distribution of X, we can derive the distribution of Y. The density of Y is non-standard in
the sense that it has both discrete and continuous components. The discrete component of
the density is a mass measured at the origin, while the continuous component of the
density is equivalent to the pdf of X for values of 50 or more. By (11.3), the value of the
mass at the origin is P(Y = 0) = P(X < 50), which equals:

Py = Prob[50, f]

T'[a] Hypergeometric2F1Regularized[a, a+b, 1 +a, -1]
Betala, b]

Let (Y1, ..., Y,) denote a random sample of size n collected on Y (remember it is Y
that is observed, not X). The likelihood for 6 is, by (11.1), equivalent to the joint density of
the random sample. Because of the component structure of the distribution of Y, it is
convenient to introduce a quantity, ng, defined to be the number of zeroes observed in the
random sample —clearly 0 <ny <n. Now, for a particular random sample (y;, ..., ¥.),
the likelihood is made up of contributions from both types of observations. For the ny zero
observations it is

[TPw; =0) =@ =0)"
0
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where the product is taken over the ny zero observations. The contribution of the non-zero
observations to the likelihood is

1706

where the product is taken over the (n —ng) observations in the sample which are at least
equal to 50, and f denotes the scaled Beta pdf. The likelihood is therefore

L©) = Py =0)" []r0i0). (11.4)

To illustrate construction of the observed likelihood, we load the CensoredMarks

data set into Mathematica:

data = ReadList ["CensoredMarks.dat"];

There are a total of n = 264 observations in this data set:

n = Length[data]

264

Next, we select the marks of only those students that passed, storing them in the

PassMark list:
PassMark = Select[data, (# = 50) &];

ny, = n - Length[PassMark]

40
Calculation reveals that 40 of the 264 students must have received marks below 50, which
implies a censoring (failure) rate of around 15%. As per (11.4), the observed likelihood for
60, given this data, is:

Py° * Timesee@ (f /. x - PassMark)

1

Betala, b]
(2-40-2022-206 b 3-186+100 2486 b 5304-376a-376 b 7-65+31 a+34 Db

264

1174O+2O a+20b 13725+l4 a+llb 17723+10 a+l3b
19731+l7 a+l4b 23713+6 a+7b 29720+l3 a+7b 31718+l3 a+5b

37—15+4 a+llb 4778+8b 5378+8a 5979+9a 7177+7a

79-1+a 1763-10+a+2b 4876462 go5g-3+3a 1 5740

Hypergeometric2FlRegularized[a, a+b, 1+a, -1] 40

)

ClearAll [data, n, PassMark]; Unset[ny]; Unset[Py]:
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@ Example 4: The Likelihood and Observed Likelihood for a Time Series Model

In the previous examples, the likelihood function was easily constructed, since due to
mutual independence, the joint distribution of the random sample was simply the product
of the marginal distributions. In some situations, however, mutual independence amongst
the sampling variables does not occur, and so the derivation of the likelihood function
requires more effort. Examples include time series models, pertaining to variables
collected through time that depend on their past.

Consider a random walk with drift model
Xi=u+X1+U

with initial condition Xy =0. The drift is given by the constant p € R, while the
disturbances U, are assumed to be independently Normally distributed with zero mean and
common variance o> € R, ; that is, U, ~ N0, o?), for all t =1, ..., T, and E[U, U;] =0
forall 7 # s.

We wish to construct the likelihood for parameter 6 = (u, o). One approach is to use
conditioning arguments. We begin by considering the joint distribution of the sample
(X1, ..., X7). This cannot be written as the product of the marginals (c¢f. (11.2)) as X,
depends on X, i, ..., Xy, for all r=1, ..., T. However, in light of this dependence,
suppose instead that we decompose the joint distribution of the entire sample into the
distribution of X7 conditional on all previous variables, multiplied by the joint distribution
of all the conditioning variables:

fi.or (e, x5 0) = fr|1 ,,,,, -1 (e |x1, v X215 0) (11.5)

Xfi,...r-1 (K15 -5 X715 6)
where fT| \.....7—1 denotes the distribution of X7 conditional on X; = xy, ..., X7-1 = X7,
and f; . 7-; denotes the joint distribution of (Xi, ..., X7_;). From the form of the random

walk model, it is clear that when fixing any X;, all previous X; (s < f) must also be fixed.
This enables us to simplify the notation, for the conditional pdf on the right-hand side of
(11.5) may be written as

Sr, -1 G |x1, v Xpop30) = fr|r_1(xr |xT—1;9)~ (11.6)

From the assumptions on the disturbances, it follows that
X | X1 =x721) ~ N(u+x7-1, 02) (11.7)
which makes it is easy to write down the conditional density given in (11.6). Consider
now the joint distribution of (Xi, ..., X7_1) on the right-hand side of (11.5). Here, again,

the same idea is used to decompose the joint distribution of the remaining variables: the
appropriate equations are (11.5) and (11.6) but with T replaced by T — 1. By recursion,

i @ s x030) = fr o (i | x7-156) x Jroyr2 (G | x7-2560) x---

X fo)1 (2 [ x130) x fy (o1 | (Xo = 0);6)
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T
= [1f & |x:0 (11.8)
1=1
where each of the conditional densities in (11.8) is equivalent to (11.6) for t=2, ..., T,

and f| o is the pdf of a N(u, o%) distribution because of the assumption X, = 0. By (11.1),
(11.8) is equivalent to the likelihood for 6.

To enter this likelihood into Mathematica, we begin by entering the time ¢
conditional pdf given in (11.7):

f = —1—Exp[— (

oV2mn

Xe —I«l—xt:-l)2 ] .
2 o2 !
Let us suppose we have data {x, ..., x¢} = {1, 2, 4,2, =3, =2}:
xdata = {1, 2, 4, 2, -3, -2};

To obtain the observed likelihood, we use a modified form of Method 1 that accounts for
the initial condition xy = 0:

xlis = Thread [xRange[Length [xdata]] 1:
xrules = Join[{x%x, » 0}, Thread[xlis - xdata]]
{xg >0, X151, X252, X354, X4 52, Xs >-3, Xg >-2}

Then, the observed likelihood for 6= (u, 0?) is obtained by substituting in the
observational rules:

6
obsLé = ]._.[ f /. xrules // Simplify
t=1
_ 1842 ;42-3u2

8 713 of

Figure 1 plots the observed likelihood against values of u and ¢o%. Evidently, obsL6 is
maximised in the neighbourhood of (u, o%) = (0, 6).

Fig. 1: Observed likelihood for y and o
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I 11.3  Maximum Likelihood Estimation

Maximum likelihood parameter estimation is based on choosing values for 8 so as to
maximise the likelihood function. That is, the MLE of 6, denoted @, is the solution to the
optimisation problem:

~

6 =argmaxgco LOO| X = x1, ..., X, = X,). (11.9)

Thus, 6 is the value of the argument of the likelihood, selected from anywhere in the
parameter space, that maximises the value of the likelihood after we have been given the
sample. In other words, we seek the particular value of 6, namely, 9, which makes it most
likely to have observed the sample that we actually have. We may view the solution to
(11.9) in two ways depending on whether the objective function is the likelihood function
or the observed likelihood function. If the objective is the likelihood, then (11.9) defines

the ML estimator, 0= 9(X1, ..., X,); since this is a function of the random sample, fisa
random variable. If the objective is the observed likelihood, then (11.9) defines the ML
estimate, 0= @(xl, .eey X), Where (x1, ..., x,) denotes observed data; in this case fis a

point estimate.

The solution to (11.9) is invariant to any monotonic increasing transformation of the
objective. Since the natural logarithm is a monotonic transformation, it follows that

~

6 = arg maxy c g log L(0) (11.10)

which we shall use, from now on, as the definition of the estimator (estimate). The natural
logarithm of the likelihood, log L(6), is called the log-likelihood function. A weaker
definition of the MLE, but one that, in practice, is often equivalent to (11.10) is

0 = arg max; _ log L(0) (11.11)
where @ denotes a finite, non-null set whose elements @ satisfy the conditions

9 9) = il 7
55 logL@® =0 and -5 logL(®) <O0. (11.12)

The two parts of (11.12) express, respectively, the first- and second-order conditions
familiar from basic calculus for determining local maxima of a function.! Generally
speaking, we shall determine MLE through (11.12), although Example 7 below relies on
(11.10) alone. One further piece of notation is the so-called score (or ‘efficient score’ in
some texts), defined as the gradient of the log-likelihood,

S(6) = % log L(6).

For example, the first-order condition is simply S(8) = 0.

Clear|[n];
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@ Example 5: The MLE for the Exponential Parameter

Let X ~ Exponential(f), where parameter 6 € R . Here is its pdf:
1
£f= —e ¥°; domain[£f] = {x, 0, =} && {6 > 0};
e
For a random sample of size n drawn on X, the log-likelihood function is:

logle = Log[ﬁ (£/.%->x%) |

i=1

noLog[6] + )i X
6

Of course, this will only work if SuperLog has been activated (see §11.1 B). The score
function is the gradient of the log-likelihood with respect to 6:

score = Grad[logLo, 6]

n
-no+ L X
62

where we have applied mathStatica’s Grad function. Setting the score to zero and
solving for 6 corresponds to the first-order condition given in (11.12). We find:

so0l6 = Solve[score == 0, 6]

The unique solution, sol6, appears in the form of a replacement rule and corresponds to
the sample mean. The nature of the solution is not yet clear; that is, does the sample mean
correspond to a local minimum, local maximum, or saddle point of the log-likelihood? A
check of the second-order condition, evaluated at sol6:

Hessian[logLe, 6] /. Flatten[sol®o]

1’13

2

(X5 %i)

.. reveals that the Hessian is strictly negative at the sample mean and therefore the log-
likelihood is maximised at the sample mean. Hence, the MLE of 6 is
A 1 "
0 = W Z X,' .

i=1

Note that Hessian [ f, x] is a mathStatica function. |
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@ Example 6: The MLE for the Normal Parameters

Let X ~ N(u, o), where £ € R and 0 € R, , with pdf f(x; u, o2):

domain[£f] = {x, -oo, };
oVa2r

For a random sample of size n drawn on X, the log-likelihood for parameter 6 = (u, ) is:2

logle = Log[ﬁ (£/.%->x%;) |

i=1

n (u? +0? Log[2 7] +2 0% Log[o]) -2 1 Y5 | Xy + 2 ) X3
2 o2

The score vector S(6) = S(u, o) is given by:

score = Grad[logLe, {u, o}]

n 2 2 n n 2
S+ Y R nys-no ’2“Zi:1Xi+Zi:1Xi}
{ = : =

Mathematica’s Solve command is quite flexible in allowing various forms of the first-

order conditions to be entered; for example, {score[1] == 0, score[2] == 0} or
score == {0, 0}, or score == 0. Setting the score to zero and solving yields:

sol6 = Solve[score == 0, {u, o}]

(55 %)
({o-- o By,
Va n
(%)’
Vn n

Clearly, the negative-valued solution for o lies outside the parameter space and is
therefore invalid; thus, the only permissible solution to the first-order conditions is:

so0l6 = sole[2]

no 2
_ (Zi:]nX1> + le'-l:l X?_ n .
i1 Xi
{O - T ——}
In n

Then 0 = (ft, &) is the MLE of 6, where [t and & are the formulae given in sol6 (we
check second-order conditions below). The functional form given by Mathematica for &
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may appear unfamiliar. However, if we utilise the following identity for the sum of
squared deviations about the sample mean,

c =2 c =2

DX -X) = DX} -nX

i=1 i=1

where X = = 37| X;, then

N n .2
o= \/% S X=Xy
By the Invariance Property (see §11.4 E), the MLE of o2 is

21Ny w2
@) =~ 21 X - X)

which is the 2™ sample central moment.

The second-order conditions may, for example, be checked by examining the
eigenvalues of the Hessian matrix evaluated at 6:

Eigenvalues [Hessian[logLe, {u, o}] /. sole] // Simplify

- )

-n Z?:l Xy

n’ 2n
{ 2 ! 2

<Z?:1 Xi) 7nZIj-_1:j_ ij. <Z?:1 Xi )

3

Given the identity for the sum of squared deviations, the eigenvalues of the Hessian are
—né"% and —2n 6%, which clearly are negative. Thus, the Hessian is negative definite at
6 and therefore the log-likelihood is maximised at . |

@ Example 7: The MLE for the Pareto Parameters

Let X ~ Pareto(e, ), where parameters @ € R, and S € R, . The pdf of X is given by:
f=ap*x **Y; domain[£f] = {x, B, =} && {a >0, B> 0};

Since X = B, there exists dependence between the parameter and sample spaces. Given a
random sample of size n collected on X, the log-likelihood for 6 = (a, B) is:

logle = Log[ﬁ (£/.%->x%) |

i=1

n (Logla] +aLog(B]) - (1+a) ) Log[x;]
i=1

The score vector is given by:
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score = Grad[logLe, {a, B}]

{n (%+Log[ﬁ]) zLOg[Xi]r nﬁi}

If we attempt to solve the first-order conditions in the usual way:

Solve[score == 0, {a, B}]
{1

.. we see that Solve cannot find a solution to the equations. However, if we focus on
solving just the first of the first-order conditions, we find:3

sola = Solve[score[l] == 0, a]

n
{{aéinLog[B] - i, Log [x; ] }}

This time a solution is provided, albeit in terms of S3; that is, & = @(8). We now take this
solution and substitute it back into the log-likelihood:

loglé /. Flatten[sola] // Simplify

n n
n 71+Log[fnLOg[B]+ZT:1L09[X1] }];Log[xl]

This function is known as the concentrated log-likelihood. 1t corresponds to
log L(@(B), B). Since it no longer involves @, we can maximise it with respect to 5. Let [A?
denote the solution to this optimisation problem. This solution can then be substituted
back to recover & = &(ﬁ); then = (d/, ﬁ) would be the MLE of 6. In general, when the
first-order conditions can be solved uniquely for some subset of parameters in 6, then
those solutions can be substituted back into the log-likelihood to yield the concentrated
log-likelihood. The concentrated log-likelihood is then maximised with respect to the
remaining parameters, usually using numerical techniques.

For our example, maximising the concentrated log-likelihood using standard calculus
will not work. This is because the parameter space depends on the sample space.
However, by inspection, it is apparent that the concentrated log-likelihood is increasing in
B. Therefore, we should select S as large as possible. Now, since each X; = 3, we can
choose 3 no larger than the smallest observation. Hence, the MLE for 3 is

ﬁzmin(Xl’ X2’ cees Xn)

which is the smallest order statistic. Replacing 8 in &(B) with J yields the MLE for «,

n
A X
a/—n/glog( min(xl,Xlz,an))' -
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I 11.4  Properties of the ML Estimator

11.4 A Introduction

This section considers the small and large sample statistical properties of the MLE.
Typically, small sample properties of a MLE are determined on a case-by-case basis.
Finding the distribution of the estimator is the most important —its pdf and/or cdf, mgf or
cf—for from this we can determine the moments of the estimator and construct
confidence intervals about point estimates, and so on. Unlike, say, the MVUE class of
estimator, whose properties are supported by a set of elegant theorems, the MLE has only
limited small sample properties. Generally though, the MLE has the ‘property’ of being
biased. The MLE properties are listed in Table 1.

Sufficiency The MLE is a function of sufficient statistics.

Efficiency If an estimator is BUE, then it is equivalent to the MLE,
provided that the MLE is the unique solution to the
first-order condition that maximises the log-likelihood
function.

Asymptotic Under certain regularity conditions, the MLE is consistent;
ithas a limiting Normal distribution when suitably scaled;
and it is asymptotically efficient.

Invariance If & is the MLE of 6, then g(@) is the MLE of g(0).

Table 1: General properties of ML estimators

For proofs of these properties see, amongst others, Stuart and Ord (1991). The Invariance
property is particularly important for estimation and it will be extensively exploited in the
following chapter. Under fairly general conditions, the Asymptotic properties of the MLE
are quite desirable; it is the attractiveness of its large sample properties which has
contributed to the popularity of this estimator in practice. Even if the functional form of
the MLE is not known (i.e. the solution to (11.12) can only be obtained by numerical
methods), one can assert asymptotic properties by checking regularity conditions; in such
situations, it is popular to use simulation techniques to determine small sample properties.

In §11.4 B, we examine the small sample properties of the MLE. Then, in §11.4 C,
some of the estimators asymptotic properties are derived. In §11.4 D, further asymptotic
properties of the MLE are revealed as a result of the model being shown to satisfy certain
regularity conditions. Finally, in §11.4 E, the invariance property is illustrated. We begin
with Example 8, which describes the model and derives the MLE.

@ Example 8: The MLE of 6

Let the continuous random variable X have pdf f(x; 6):

£f=0x%%"; domain[f] ={x, 0, 1} && {6 > 0};
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where parameter 6 € R, . The distribution of X can be viewed as either a special case of
the Beta distribution (i.e. Beta(f, 1)), or as a special case of the Power Function
distribution (i.e. PowerFunction(f, 1)). Assuming SuperLog has been activated (see
§11.1 B), the log-likelihood for 6 is derived with:

logle = Log[ﬁ (£/.%->x%) |

i=1

nLog[6] + (-1 +6) ZLog[xi]
i=1

In this example, the MLE of 6 is the unique solution to the first-order condition:

so0l6 = Solve[Grad[logLe, 6] = 0, 6]

{{o--=—room7 1!

er-_l:j_ Log [Xi ]

... because the log-likelihood is globally concave with respect to 6; that is, the Hessian is
negative-valued at all points in the parameter space:

Hessian[logLe, 6]

n
o2

Thus, the MLE of 8 is

h_o__ _.n
0= ST Tog (X)) u (11.13)

11.4 B Small Sample Properties

The sufficiency and efficiency properties listed in Table 1 pertain to the small sample
performance of the MLE. The first property (sufficiency; see §10.4), is desirable because
sufficient statistics retain all statistical information about parameters, and therefore so too
must the MLE. Despite this, the MLE does not always use this information in an optimal
fashion, for generally the MLE is a biased estimator.# Consequently, the second property
(efficiency; see §10.3), should be seen as a special situation in which the MLE is unbiased
and its variance attains the Cramér—Rao Lower Bound.

@ Example 9: Sufficiency, Efficiency and 6

Consider again the model given in Example 8, with pdf f(x; 6):

£f=06x°'; domain[f] = {x, 0, 1} && {6>0};
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The first property claims that there should exist a functional relationship between a
sufficient statistic for 6 and the MLE @, given in (11.13). This can be shown by identifying
a sufficient statistic for 6. Following the procedure given in §10.4, we apply
mathStatica’s Suf ficient function to find:

Sufficient [£f]
n
Qn ﬂ X£l+6
i=1

Then, by the Factorisation Criterion, the statistic S =[], X; is sufficient for 6. We
therefore have

R
log(S)

and so the MLE is indeed a function of a sufficient statistic for 6.

The second property states that the MLE is the BUE provided the latter exists, and
provided the MLE is the unique solution to the first-order conditions. Unfortunately, even
though it was demonstrated in Example 8 that 0 uniquely solved the first-order conditions,
there is no BUE in this case. Nevertheless, the MVUE of 6 does exist (since S is a
complete sufficient statistic for 6) and it is given by

n_ __n—l1
b= log(8) *

It is easy to see that the MLE 6 and the MVUE @ are related by a simple scaling
=L 9 In light of this, it follows immediately that the MLE must be

n
biased upwards. ]

transformation, 6 =

@ Example 10: The Distribution of

Consider again the model given in Example 8, with pdf f(x; 6):
£f=06x°'; domain[f] = {x, 0, 1} && {6>0};
In this example, we derive the (small sample) distribution of the MLE

0=— #
Z,‘:l log(X;)

by applying the MGF Theorem (see §2.4 D). We begin by deriving the mgf of
TogK = -+ Zl log(X;)

and then matching it to the mgf of a known distribution. In this way, we obtain the
distribution of TogX. The final step involves transforming from TogX to 6.
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By the MGF Theorem, the mgf of logX is:

-t
Expect [e* 9], £17 /. t 5 —
n

— This further assumes that: {t+6>0}

n

-t 40

This expression matches the mgf of a Gamma(rn, #) distribution.> Hence, logX ~
Gamma(n, #). Then, since 6 = 1/logX, it follows that § has an Inverse Gamma
distribution with parameters n and # That is,

6 ~ InverseGamma(n, #).

The pdf of 8, say /3 can be entered from mathStatica’s Continuous palette:

A-(at+l) - L
@ ©vé 1
fé = — /.{a—»n,b—» };
I'[a] b? ne

{é, 0, oo} && {n > 0, n € Integers, 6 > 0};

domain[£;]

We now determine the mean (although we have already deduced its nature through the
relation between 6 and given in Example 9) and the variance of the MLE:

Expect [6, fé]
— This further assumes that: {n>1}

no
-1l+n

Var[é, fé] // FullSimplify
— This further assumes that: {n>2}

n? 62
(-2+n) (-1+n)?

11.4 C Asymptotic Properties

Recall that estimators may possess large sample properties such as asymptotic
unbiasedness, consistency, asymptotic efficiency, be limit Normally distributed when
suitably scaled, and so on. These properties are also relevant to ML estimators. Like the
small sample properties, large sample properties can be examined on a case-by-case basis.
Analysis might proceed by applying the appropriate Central Limit Theorem and Law of
Large Numbers.
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@ Example 11: Asymptotic Unbiasedness and Consistency of o

Consider the model of Example 8, with pdf f(x; 6):

£f=06x°'; domain[f] = {x, 0, 1} && {6>0};

nf
N n—1
establish whether or not 6 is asymptotically unbiased for 6:

Since we have already shown E [0] = in Example 10, it is particularly easy to

Limit[ no y n—»oo]
n_

o

As the mean of 6 tends to 6 as n increases, we say that  is asymptotically unbiased for 6.
Here we have defined asymptotic unbiasedness such that lim, _,  E [@] = 6. Note that there
are other definitions of asymptotic unbiasedness in use in the literature. For example, an
estimator may be termed asymptotically unbiased if the mean of its asymptotic
distribution is 6. In most cases, such as the present one, this second definition will
coincide with the first so that there is no ambiguity.

We can also establish whether or not & is a consistent estimator of 6 by using
Khinchine’s Weak Law of Large Numbers (see §8.5C), and the Continuous Mapping
Theorem. Consider

TogX = & >} (~log(Xy))
i=1

which is in the form of a sample mean. Each variable in the sum is mutually independent,
identically distributed, with mean

Expect[-Log[x], £f]

L
o

Therefore, by Khinchine’s Theorem, logXL 0. As 9=1/ (logX), 050 by the
Continuous Mapping Theorem.® Therefore, the MLE 6 is a consistent estimator of 6.

The next asymptotic property concerns the limiting distribution of Vn (@ - 0).
Unfortunately, in this case, it is not possible to derive the limiting distribution using the
asymptotic theory presented so far. If we apply Lindeberg-Lévy’s version of the Central
Limit Theorem (see §8.4) to — X%, log(X;), we can only get as far as stating,

Y (log(Xp) —n6”!

0~ Vn

:\/E(%—1) L Z~NO, 1)

To proceed any further, we must establish whether or not certain regularity conditions are
satisfied by the distribution of X.7 [ |
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11.4 D Regularity Conditions

To derive (some of) the asymptotic properties of 0, we used the fact that we knew the
estimator’s functional form, just as we did when determining its small sample properties.
Alas, the functional form of the MLE is often unknown; how then are we to determine the
asymptotic properties of the MLE? Fortunately, there exist sets of regularity conditions
that, if satisfied, permit us to make relatively straightforward statements about the
asymptotic properties of the MLE. Those stated here apply if the random sample is a
collection of mutually independent, identically distributed random variables, if the
parameter 6 is a scalar, and if there is a unique solution to the first-order condition that
globally maximises the log-likelihood function. This ideal setting fits our particular case.

Let 8y denote the ‘true value’ of 0, let iy denote the Fisher Information on 6 evaluated
at @ = 6y, and let n denote the sample size. Under the previously mentioned conditions, the
MLE has the following asymptotic properties,

consistency o2 6o
— d
limit Normal distribution vVn (0 - 00) — N(, i)

asymptotic efficiency relative to all other consistent uniformly
limiting Normal estimators

Table 2: Asymptotic properties of the MLE, given regularity conditions

under the following regularity conditions:
1. The parameter space ® is an open interval of the real line within which 6, lies.
2. The probability distributions defined by any two different values of 6 are distinct.

3. For any finite n, the first three derivatives of the log-likelihood function with respect to
0 exist in an open neighbourhood of 6.

4. In an open neighbourhood of 6, the information identity for Fisher Information holds:

2
iv = E|(Z og 0x: 60)) | = ~E[ 7 log 1X: ).

Moreover, iy is finite and positive.

5. In an open neighbourhood of 6 :

. d .
() = 7 log L) > NO. i)
2
i) -1 L togL(dy) 5 iy

3
(iii) For some constant M < oo, 71? 6,%3— log L(6y) N M.
For discussion about the role of regularity conditions in determining asymptotic properties
of estimators such as the MLE, see, for example, Cox and Hinkley (1974), Amemiya

(1985) and McCabe and Tremayne (1993).
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@ Example 12: Satisfying Regularity Conditions

The model of Example 8, with pdf f(x; 6y), is given by:
£=0,%%'; domain[f] ={x, 0, 1} && {6, > 0};

Note that the parameter of the distribution is given at its true value 6.

The first regularity condition is satisfied as the parameter space ® = {#:6 € R, } is an
open interval of the real line, within which we assume 6, lies. The second condition
pertains to parameter identification and is satisfied in our single-parameter case. For the
third condition, the first three derivatives of the log-likelihood function evaluated at 6, are:

Table[D[Log[l__[ (£/. x—»xi)], {60, :i}], {3, 3}]

i=1
n S n 2n
{50‘ +ZL09[Xi] ’ *g%‘, a}
i=1
and each exists within a neighbourhood about 6, (wherever that might be). Next, the
information identity is satisfied:

FisherInformation[6,, £, Method -» 1] ==
FisherInformation[6,, £, Method - 2]

True
Moreover, the Fisher Information iy is equal to:

FisherInformation[8,, £f]

1
o

on

which is finite, so the fourth condition is satisfied. From the derivatives of the log-
likelihood function, we can establish that the fifth condition is satisfied. For 5(i),

1 0

10 _ 13 e
7 90 log L(6) = >, (log X; +63")

Vn i=1

which, by the Lindeberg-Lévy version of the Central Limit Theorem, is N(0, ip) in the
limit, as each term in the summand has mean and variance:

1
Expect [Log [x] +
6o

. £]
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1
Var[Log[x] + ’ f]
6o
1
S
For 5(ii),
1 9

— o Sz log L) = 6% = io

for every n, including in the limit. For 5(iii),

L ‘ % log L(6) ‘ =263

is non-stochastic and finite for every n, including in the limit. In conclusion, each
regularity condition is satisfied. Thus, 6 is consistent for 6, \/; 6 has a limit Normal
distribution, in particular, \/; (@—00) i> N(, 0(2)), and @ is asymptotically efficient.
These results enable us, for example, to construct the estimator’s asymptotic distribution:
@3N(90, 0(2)/ n), which may be contrasted against the estimator’s exact distribution
0~ InverseGamma(n, #) found in §11.4 B. | |

11.4 E Invariance Property

Throughout this section, our example has concentrated on estimation of 6. But suppose
another parameter A, related functionally to 6, is also of interest. Given what we already
know about 8, it is usually possible to obtain the MLE of A and to establish its statistical
properties by the Invariance Property (see Table 1), provided we know the functional form
that links A to 6.

Consider a multi-parameter setting in which 6 is a (kx1) vector and A is a (jx1)
vector, where j < k. The link from 6 to A is through a vector function g; that is, A = g(6),
where g is assumed known. The parameters are such that 8 € ® and A € A, with the
particular true values once again indicated by a O subscript. The parameter spaces are
® cR* and A cR/, so that g:® — A. Moreover, we assume that g is a continuous
function of 6, and that the (jxk) matrix of partial derivatives

G = %O

has finite elements and is of full row rank; that is, rank(G(6)) = j, for all 0 € ©.

Of particular use is the case when j = k, for then the dimensions of 6 and A are the
same and G(f) becomes a square matrix having full rank (which means that the inverse
function g~! must exist). In this case, the parameter A is said to represent a re-
parameterisation of 6. There are a number of examples of re-parameterisation in the next
chapter, the idea there being to transform a constrained optimisation problem in 6
(occurring when @ is a proper subset of R¥) into an unconstrained optimisation problem in
A (re-parameterisation achieves A = R¥).
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The key results of the Invariance Property apply to the MLE of g(f) and to its
asymptotic properties. First, if @ is the MLE of 6, then g(f) is the MLE of A = g(6). This is
an extremely useful property for it means that if we already know 8, then we do nor need
to find the MLE of A, by maximising the log-likelihood log L(d). Second, if & is
consistent, and has a limiting Normal distribution when suitably scaled, and is
asymptotically efficient, then so too is A = g(é). That is, if

o2 8, (11.14)
Vi (0-6,) = N0, iy!) (11.15)
then
2@) > g(th) (11.16)
Vit (50) - g(60)) > N(O, G6) x ig" x G(A)"). (11.17)

The small sample properties of A generally cannot be deduced from those of 6, but must be
examined on a case-by-case basis. To see this, a simple example suffices. Let
A = g(#) = 6%, and suppose that the MLE @ is unbiased. By the Invariance Property, the

MLE of 1 is A =& ; however, it is not necessarily true that A is unbiased for A, for in
general E[é’2 1+ (E[@])z.

@ Example 13: The Invariance Property

The model of Example 8, with pdf f(x; 6), is given by:
£f=0x%%"; domain[f] ={x, 0, 1} && {6 > 0};
Consider the parameter A = E[X]:

A = Expect [x, f]

6
1+6

Clearly, parameter A € A = (0, 1) is a function of 6; A = g(6) =60/ (1 + 6), with true value
Ao = g(6p). To estimate Ay, one possibility is to re-parameterise the pdf of X from 6 to A
and repeat the same ML estimation procedures from the very beginning. But we can do
better by applying the Invariance Property, for we already have the functional form of &
(see (11.13)) as well as its asymptotic properties. The MLE of A, is given by

i 0 _ n
1+  n-2r log(Xy) "
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Since g is continuously differentiable with respect to 6, it follows from (11.17) that the
limiting distribution of A is

VZ(X—M)ieN@4§%g@gf/m)

In particular, the variance of the limiting distribution of \/; (7( - 7(0) in terms of 6, is
given by:

Grad[x, 6]2

- - / «. 6> 60
FisherInformation[6, f]

63
(1+6)*°

The asymptotic distribution of the MLE of A is therefore

< 0
ANy, —2— .
I’l(l + 0())

I 11.5 Asymptotic Properties: Extensions

The asymptotic properties of the MLE —consistency, a limiting Normal distribution when
suitably scaled, and asymptotic efficiency — generally hold in a variety of circumstances
far weaker than those considered in §11.4. In fact, there exists a range of regularity
conditions designed to cater for a variety of settings involving various combinations of
non-independent and/or non-identically distributed samples, parameter 6 a vector, multiple
local optima, and so on. In this section, we consider two departures from the setup in
§11.4 D. Texts that discuss proofs of asymptotic properties of the MLE and regularity
conditions include Amemiya (1985), Cox and Hinkley (1974), Dhrymes (1970), Lehmann
(1983), McCabe and Tremayne (1993) and Mittelhammer (1996).

11.5 A More Than One Parameter

Suppose we now allow parameter 6 to be k-dimensional, but otherwise keep the statisticial
setup described in §11.4 unaltered; namely, the random sample consists of mutually
independent and identically distributed random variables, and there is a unique solution to
the first-order condition—a system of k equations —that maximises the log-likelihood
function. Then, it seems reasonable to expect that regularity conditions 1, 4 and 5 given in
§11.4 D need only be extended to account for the higher dimensionality of 8:

la. The k-dimensional parameter space ® must be of finite dimension as sample size n
increases, it must be an open subset of R¥, and it must contain the true value 6, within
its interior.
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4a. In an open neighbourhood of 6y, the information identity for Fisher Information (a
(kx k) symmetric matrix) holds. That is:

T
io = E|(Z log £X; 60)) (-2 log f(X; ) |
(32
= —E|ggr log f(X: )]

Moreover, every element of i, is finite, and i, is positive definite.

5a. In an open neighbourhood of 6,:

. 1
0 = ae log L(fly) — N(0, io)
O Y
(i - 50 90T log L(6y) N i
(iii) Let indexes u, v, w € {1, ..., k} pick out elements of 6. For constants M, , ,, <,
1
ks ae g 108 L) | > Mo

If these conditions hold, as well as conditions 2 and 3, then the MLE 6 is a consistent
estimator of 6, Vn (@ - 00)i> N (6, iy 1), and 6 is asymptotically efficient (cf. Table 2).

@ Example 14: The Asymptotic Distribution of §: X ~ Normal

Let X ~ N(uo, 03), with pdf f(x; o, 03):

oo V2 205

domain[£f] {x, -0, ©} && {Uy € Reals, o, > 0};

In this case, the parameter 6= (u, 0?) is two-dimensional (k=2), with true value

6o = (o, 0%). In Example 6, where (X, ..., X)) denoted a size n random sample drawn on
X, the MLE of 6 was derived as

The regularity conditions la, 2, 3, 4a, 5a hold in this case. The dimension k is fixed at 2
for all n, the parameter space ® = {§ = (u, 0?) : p €R, 0> €R,} is an open subset of R?
within which we assume 6, lies, and the information identity holds:

FisherInformation[{u,, cg }, £, Method » 1] ==
FisherInformation[{uo, 02}, £, Method - 2]

True
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The Fisher Information matrix iy is equal to:
iy = FisherInformation|[{u,, o2}, £]

1
= 0
0 -

2 og

and it has finite elements and is positive definite. The asymptotic conditions 5a are
satisfied too. We demonstrate 5a(i), leaving verification of 5a(ii) and Sa(iii) to the reader.
For 5a(i), we require the derivatives of the log-likelihood function with respect to the
elements of . Here is the log-likelihood:

logle = Log[ﬁ (£/.%>%) |
i=1

nuj +n (Log[2 7] +2Log[og]) 05 =2 o D Xi + )5, X5

2
2 og
and here are the derivatives:

Grad[logLe, {uo, 02}]

n 2 2 n n 2
{*HMoJrZi:lXi nuofnoof2uozi:lxi+zi:lxi}

7
o2 2 o}

For the first element, we have for 5a(i),

1 0 1 4 Xi — lo
L 9 1og(6y) = = ) A
Vi ou og L) Vn & o}

which, by the Lindeberg-Lévy version of the Central Limit Theorem, is N(O, 0'52) in the
limit, as each term in the summand has mean and variance:

X - Uo

Expect[ ot f]
Oo
0
X - Uo
, £
Var[ og ]
1
g

L 2 togriy = = 3 5L (R ) )
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which is N(O, % 0'54) in the limit, as each term in the summand has mean and variance:

Expect[ 12 ((x_uo ]2—1] , f]

20'0 Oo
0
1 X - 2
Var[ (( Ilo] —1] ’ f]
2 o? Oo
_1
2 08

Finally then, as }.7_; X; and X7, X? are independent (see Example 27 of Chapter 4):
1 9 d T
W % log L(eo) — N(O, lo).
. .. A d A =1 . . .
As all regularity conditions hold, \/; (9— 00)—>N(O, iy ), with the variance-covariance
matrix of the limiting distribution given by:

Inverse[ ig ]

oz 0
0 20

From this result we can find, for example, the asymptotic distribution of the MLE

A )
o 0 20¢/n

This can be contrasted against the small sample distributions: [~ N(ug, 0% /n)
independent of n & /03 ~ Chi-squared(n — 1). [ |

11.5 B Non-identically Distributed Samples

Suppose that the statistical setup described in §11.5 A is further extended such that ML
estimation is based on a random sample which does not consist of identically distributed
random variables. Despite the loss of identicality, mutual independence between the
variables (Xi, ..., X,,) in the sample ensures that the log-likelihood remains a sum:

log L(6) = ) log fi(x;: 6)

i=1

where f;(x;;0) is the pdf of X;. Accordingly, for the MLE to have the usual trio of
asymptotic properties (see Table 1), the regularity conditions will need to be weakened
even further in order that certain forms of the Central Limit Theorem and Law of Large
Numbers relevant to sums of non-identically distributed random variables remain valid.
The conditions requiring weakening are 4a, 5a(i) and 5a(ii):
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4b. In an open neighbourhood of 6y, the information identity for asymprotic Fisher
Information (a (kxk) symmetric matrix) holds. That is:

i((;c) lim, o E[% Z ( 90 log f(X;; 90)) ( 30 log f(Xi; 00)) ]

i=1

18

lim,eo E [~ sz log L(60)] .

Moreover, every element of igc) is finite, and igc) is positive definite.

5b. In an open neighbourhood of 6 :

(i) \/1_ £ log L(fly) — N(T, i)
(i) -4 BQBBQT log L(6y) - it™.

Should these conditions hold as well as 1a, 2, 3 and 5a(iii), then the MLE 0 is a consistent
estimator of 6, Vn (0 00) — N (O (l(w)) l), and 0 is asymptotically efficient.

@ Example 15: The Asymptotic Distribution of o: Exponential Regression

Suppose that a positive-valued random variable Y depends on another random variable X,
both of which are observed in pairs ((Y1, X;), (Y2, X2), ...). For example, ¥ may represent
sales of a firm, and X may represent the firms advertising expenditure. We may represent
this dependence by specifying a conditional statistical model for Y; that is, by specifying a
pdf for Y, given that a value x € R is assigned to X. One such model is the Exponential
Regression, where Y | (X = x) ~ Exponential(exp(aq + By x)), with pdf f(y | X =x;6y):

1 Y
f = Exp[— ]
Exp[ao + Bo x] Exp[ao + Bo x]

domain[£f] {y, 0, <} && {ap € Reals, 3 € Reals, x € Reals};

The parameter 6= (a, B) € R?, and its true value 6, = (aq, By) is unknown. The
regression function is given by the conditional mean E[Y | (X = x)], and this is equal to:

Expect [y, f]

edo+x Bo

Despite the fact that the functional form of the MLE 6 cannot be derived in this case,8
we can still obtain the asymptotic properties of the MLE by determining if the regularity
conditions 1la, 2, 3, 4b, 5b(i), 5b(ii) and Sa(iii) are satisfied. In this example, we shall focus
on obtaining the asymptotic Fisher Information matrix l glven in 4b. We begin by
deriving the Fisher Information:

FisherInformation[{ao, Bo}, £f]

[ )
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This output reflects the non-identicality of the distribution of Y|(X = x), for Fisher
Information quite clearly depends on the value assigned to X. Let ((Y;, X;), ..., (Y,, X,,))
denote a random sample of size n on the pair (Y, X). Because the distribution of
Y; | (X; = x;) need not be identical to the distribution of Y; | (X; = x;) (for x; need not equal
x;), then the Sample Information matrix is no longer given by Fisher Information
multiplied by sample size; rather, Sample Information is given by the sample sum:

[ n Zr:l Xi ]
Z?:l Xi Z?:l x;

Under independence, the log-likelihood is made up of a sum of contributions,

Iy =

log L(6) = Y’ log f(yi | (X; = x): 6)

i=1

implying that %Io is exactly the expectation given in regularity condition 4b, when
computed either way because

FisherInformation[{ay, o}, £, Method -» 1] ==
FisherInformation[{a,, Bo}, £, Method - 2]

True

To obtain the asymptotic Fisher Information matrix, we must examine the limiting
behaviour of the elements of %Io. This will require further assumptions about the
marginal distribution of X. If the random variable X has finite mean u, finite variance o,

with neither moment depending on n, then by Khinchine’s Weak Law of Large Numbers,

P
X? — o + P

M-

1 4 1
o 2uXi —p and

i=1 i=1

Under these further assumptions, we obtain the asymptotic Fisher Information matrix as

() ( 1 M )
i) =
uoo P

which is positive definite. Establishing conditions 5b(i), Sb(ii) and 5a(iii) involves similar
manipulations, and in this case can be shown to hold under the assumptions concerning
the behaviour of X. In conclusion, the asymptotic distribution of the MLE & of
6o = (o, Bo) is, under the assumptions placed on X, given by

() 7= (750 ) .
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I 11.6  Exercises

1.

Let X ~ Poisson(A), where parameter A € R, . Let (X, X5, ..., X,,) denote a size n
random sample drawn on X. (i) Derive fk, the ML estimator of A. (ii) Obtain the exact
distribution of A. (iii) Obtain the asymptotic distribution of A (check regularity
conditions).

Let X ~ Geometric(p), where parameter p is such that 0 < p < 1. Let (X3, X5, ..., X},)
denote a size n random sample drawn on X. Derive p, the ML estimator of p, and
obtain its asymptotic distribution.

Let X ~ N(u, 1), where parameter ueR. Let (X;, X», ..., X;;) denote a size n
random sample drawn on X. (i) Derive fi, the ML estimator of u. (ii) Obtain the exact
distribution of j. (iii) Obtain the asymptotic distribution of & (check regularity
conditions).

Let X ~ ExtremeValue(d), with pdf f(x;6) = exp(—(x — 6) — e *?), where 6 R is
an unknown parameter. Let (X;, X5, ..., X,,) denote a size n random sample drawn on
X. (i) Obtain 6, the ML estimator of 6. (ii) Obtain the asymptotic distribution of
(check regularity conditions).

For the pdf of the N(0, o%) distribution, specify a replacement rule that serves to
replace o and its powers in the pdf. In particular, the rule you construct should act to
convert the pdf from an input of

L x? 1 2
Y Exp[fﬂz—} to an output of WEXP[*ﬁ}

Let X ~ N(0, 0?), where parameter o> € R,. Let (X, X, ..., X,)) denote a size n
random sample drawn on X.

(i) Derive &, the ML estimator of 2.
(ii) Obtain the exact distribution of 6.
(iii) Obtain the asymptotic distribution of & (check regularity conditions).

Hint: use your solution to Exercise 5.

Let X ~ Rayleigh(c?), where parameter 0> € R,. Let (X;, X,, ..., X,,) denote a size
n random sample drawn on X.

(i) Derive &, the ML estimator of 2.

(ii) Obtain the exact distribution of 5.

(iii) Obtain the asymptotic distribution of & (check regularity conditions).

Let X ~ Uniform(0, 6), where parameter § € R, is unknown, and, of course, X < 6.
Let (X1, X5, ..., X;;) denote a size n random sample drawn on X. Show that the
largest order statistic 0= Xy = max(Xy, Xa, ..., X,) is the ML estimator of 6. Using
mathStatica’s OrderStat function, obtain the exact distribution of 6. Transform
6> Y such that Y = n(@ - @) Then derive the limiting distribution of n(@ - @)
Propose an asymptotic approximation to the exact distribution of 0.



