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Chapter 12

Maximum Likelihood Estimation in Practice

I 12.1  Introduction

The previous chapter focused on the theory of maximum likelihood (ML) estimation,
using examples for which analytic closed form solutions were possible. In practice,
however, ML problems rarely yield closed form solutions. Consequently, ML estimation
generally requires numerical methods that iterate progressively from one potential solution
to the next, designed to terminate (at some pre-specified tolerance) at the point that
maximises the likelihood.

This chapter emphasises the numerical aspects of ML estimation, using illustrations
that have appeared in statistical practice. In §12.2, ML estimation is tackled using
mathStatica’s FindMaximum function; this function is the mirror image of
Mathematica’s built-in minimiser FindMinimum. Following this, §12.3 examines the
performance of FindMinimum / FindMaximum as both a constrained and an
unconstrained optimiser. We come away from this with the firm opinion that
FindMinimum / FindMaximum should only be used for unconstrained optimisation.
§12.4 discusses statistical inference applied to an estimated statistical model. We
emphasise asymptotic methods, mainly because the asymptotic distribution of the ML
estimator, being Normal, is simple to use. We then encounter a significant weakness in
FindMinimum / FindMaximum, in that it only yields ML estimates. Further effort is
required to estimate the (asymptotic) variance-covariance matrix of the ML estimator,
which is required for inference. The remaining three sections focus on details of
optimisation algorithms, especially the so-called gradient-method algorithms implemented
in FindMinimum / FindMaximum. §12.5 describes how these algorithms are built,
while §12.6 and §12.7 give code for the more popular algorithms of this family, namely
the BFGS algorithm and the Newton—Raphson algorithm.

This chapter requires that we activate the mathStatica function SuperLog:

SuperLog [On]
— SuperLog is now On.
SuperLog modifies Mathematica’s Log function so that Log [ Product []] ‘objects’

or ‘terms’ get converted into sums of logarithms; see §11.1 B for more detail on
SuperLog.



380 CHAPTER 12 §12.2

I 12.2 FindMaximum

Optimisation plays an important role throughout statistics, just as it does across a broad
spectrum of sciences. When analytic solutions for ML estimators are not possible, as is
typically the case in statistical practice, we must resort to numerical methods. There are
numerous optimisation algorithms, a number of which are implemented in Mathematica’s
FindMinimum function. However, we want to maximise an observed log-likelihood, not
minimise it, so mathStatica’s FindMaximum function is designed for this purpose.
FindMaximum is a simple mirror image of FindMinimum:

? FindMaximum

FindMaximum is identical to
the built-in function FindMinimum, except
that it finds a Max rather than a Min.

To illustrate usage of FindMaximum, we use a random sample of biometric data
attributed to Fatt and Katz by Cox and Lewis (1966):

xdata = ReadList ["nerve.dat", Number]:;

The data represents a random sample of size n = 799 observations on a continuous random
variable X, where X is defined as the time interval (measured in units of one second)
between successive pulses along a nerve fibre. We term this the ‘Nerve data’. A frequency
polygon of the data is drawn in Fig. 1 using mathStatica’s FrequencyPlot function.
The statistical model for X that generated the data is unknown; however, its appearance
resembles an Exponential distribution (Example 1), or a generalisation of it to the Gamma
distribution (Example 2).

FrequencyPlot [xdata];

200

150

100

50

0.2 0.4 0.6 0.8 1 12

Fig. 1: The Nerve data
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@ Example 1: FindMaximum — Part I

Assume X ~ Exponential(A), with pdf f(x; 1), where A € R, :
1 /A .
f=;cx-z'x ; domain[f] = {x, 0, >} && {A > 0};
For (X1, ..., X,), a size n random sample drawn on X, the log-likelihood is given by:

logLA:Log[ﬁ (E/.%->x%) |

i=1

nALog [A] + )7 | X
A

For the Nerve data, the observed log-likelihood is given by:

obslogLA = logLA /. {n -» Length[xdata], x; :» xdata[i]}

174.64 + 799 ALog[A]
X

To obtain the MLE of A, we use FindMaximum to numerically maximise obslogL.!
For example:

sol = FindMaximum [obslogLA, {A, {0.1, 1}}]

{415.987, {A— 0.218573})
The output states that the ML estimate of A is 0.218573, and that the maximised value of
the observed log-likelihood is 415.987. Here is a plot of the data overlaid with the fitted

model:

FrequencyPlot [xdata, £ /. solA[[2]]:

0 0.2 0.4 0.6 0.8 1 1.2 1.4
X

Fig. 2: Nerve data (—) and fitted Exponential model (- —-)
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The Exponential model yields a close fit to the data, except in the neighbourhood of zero
where the fit over-predicts. In the next example, we specify a more general model in an
attempt to overcome this weakness. ]

@ Example 2: FindMaximum — Part II

Assume that X ~ Gamma(a, B), with pdf f(x; o, B):

%21 @-%/B
f = -—— domain[f] = {x, 0, } && {a>0, B> 0};
T[a] B

~e

where @« € R, and 8 €R,. ML estimation of the parameter 6 = (@, 8) proceeds in two
steps. First, we obtain a closed form solution for either & or [3 in terms of the other
parameter (i.e. we can obtain either &(5) or ﬁ(a)). We then estimate the remaining
parameter using the appropriate concentrated log-likelihood via numerical methods
(FindMaximum).

The log-likelihood log L(a, B) is:

logLe =Log[ﬁ (E/.x->%:) |

i=1

L
B

nB (aLog[B] +Log[T[a]]) + (B-af) ) Loglx:] + ) xi
i=1

i-1
The score vector % log L(9) is derived using mathStatica’s Grad function:

score = Grad[logLo, {a, B}]

—noaf+ )% }

BZ

{-n (Log[B] + PolyGamma [0, a]) +ZLog[xi],
i=1

The ML estimator of « in terms of § is obtained as:

sola = Solve[score[2] == 0, a] // Flatten

> Xy
{O( nlB }
That is,

up = =

n
X;.
np S

Substituting this solution into the log-likelihood yields the concentrated log-likelihood
log L(@(B), B), which we denote 1ogLc:
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logLc = 1logLé /. sola

*% ZXi+ ZLOQ[Xi] (ﬁfg—zi:rll}{i +
i=1 i=1
D Xi Log [B] Ji | X1
np Log[T[ nlB H+ oA 1 ]

Next, we substitute the data into the concentrated log-likelihood:

obslogLc = loglc /. {n -» Length[xdata], x; :» xdata[i]}:;

Then, we estimate  using FindMaximum:

solf = FindMaximum [obslogLc, {3, {0.1, 1}}][2]

{B-0.186206}

383

For the Nerve data, and assuming X ~ Gamma(a, ), the ML estimate of § is ﬁ:

0.186206. Therefore, the ML estimate of a, & (ﬁ), is:

sola /.

Flatten[{solfB, n -» Length[xdata], x; :» xdata[i]}]

{a—>1.17382})

Here is a plot of the data overlaid by the fitted model:

FrequencyPlot [xdata, £ /. {a > 1.17382, 3> 0.186206}];

35 ¢

X

Fig. 3: Nerve data (—) and fitted Gamma model (- ——)

The Gamma model (see Fig.3) achieves a better fit than the Exponential model (see

Fig. 2), especially in the neighbourhood of zero.
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I 12.3 A Journey with FindMaximum

In this section, we take a closer look at the performance of FindMaximum. This is done
in the context of a statistical model that has become popular amongst analysts of financial
time series data—the so-called autoregressive conditional heteroscedasticity model
(ARCH model). Originally proposed by Engle (1982), the ARCH model is designed for
situations in which the variance of a random variable seems to alternate between periods
of relative stability and periods of pronounced volatility. We will consider only the
simplest member of the ARCH suite, known as the ARCH(1) model.

Load the following data:
pdata = ReadList ["BML.dat"];
The data lists the daily closing price (in Australian dollars) of Bank of Melbourne shares

on the Australian Stock Exchange from October 30, 1996, until October 10, 1997 (non-
trading days have been removed). Figure 4 illustrates the data.

Day

50 100 150 200

Fig. 4: The Bank of Melbourne data

Evidently, there are two dramatic increases in price: +$0.65 on day 105, and +$0.70 on
day 106. These movements were caused by a takeover rumour that swept the market on
those days, which was officially confirmed by the bank during day 106. Further important
dates in the takeover process included: day 185, when approval was granted by the
government regulator; day 226, when complete details of the financial offer were
announced to shareholders; day 231, when shareholders voted to accept the offer; and day
240, the bank’s final trading day.

Our analysis begins by specifying a variant of the random walk with drift model (see
Example 4 in Chapter 11) which, as we shall see upon examining the estimated residuals,
leads us to specify an ARCH model later to improve fit. Let variable P, denote the closing
price on day ¢, and let X, denote a vector of regressors. Then, the random walk model we
consider is
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AP, = %.B + U, (12.1)

where AP, =P, — P,_;, and the notation X,.[ indicates the dot product between the
vectors X, and 8. We assume U, ~ N(0, o%); thus, AP, ~ N(%,. B, o%). For this example,
we specify a model with five regressors for vector X,, all of which are dummy variables:
they consist of a constant intercept (the drift term), and day-specific intercept dummies
corresponding to the takeover, the regulator, the disclosure and the vote. We denote the
regression function by

X.B = Bi+x2fBot+x3 By + x4 Pa+ x5 Bs.
For all n observations, we enter the price change:
Ap = Drop [pdata, 1] - Drop[pdata, -1];

and then the regressors: x2 for the takeover, x3 for the regulator, x4 for the disclosure
and x5 for the vote:

x2 = x3 = x4 = x5 = Table [0, {239}];
x2[104] = %x2[105] = %x3[[184] = x4[[225] = x5[230] = 1;

Note that the estimation period is from day 2 to day 240; hence, the reduction of 1 in the
day-specific dummies. The statistical model (12.1) is in the form of a Normal linear
regression model. To estimate the parameters of our model, we apply the Regress
function given in Mathematica’s Statistics LinearRegression’ package. The
Regress function is built using an ordinary least squares (OLS) estimator. The
differences between OLS and ML estimates of the parameters of our model are minimal.2
To use Regress, we must first load the Statistics add-on:

<< Statistics"
and then manipulate the data to the required format:

rdata = Transpose|[ {x2, x3, x4, x5, Ap}]:
The estimation results are collected in 01s6:

ols6 = Regress|[rdata,
{takeover, regulator, disclosure, vote},
{takeover, regulator, disclosure, vote},
RegressionReport » {ParameterTable,
EstimatedvVariance, FitResiduals}]:

Table 1 lists the OLS estimates of the parameters (8;, B>, B3, B4, Bs); the estimates
correspond to the coefficients of drift (Iabelled 1) and the day-specific dummies (labelled
takeover, regulator, disclosure and vote).
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Estimate SE TStat
1 —0.000171  0.0059496 —-0.02873
takeover 0.675171  0.0646293 10.44680
regulator 0.140171  0.0912057 1.53687
disclosure 0.190171  0.0912057 2.08508
vote  —0.049829  0.0912057 —0.54633
o? 0.008283

Table 1: OLS estimates of the Random Walk with Drift model

Notice that the only regressors to have t-statistics that exceed 2 in absolute value are the
takeover and disclosure day-specific dummies. Figure 5 plots the time series of fitted
residuals.

03

02

")

_Ol L

-02 |

,03 L

—04 I

Fig. 5: Fitted OLS residuals

The residuals exhibit clusters of variability (approximately, days 2-30, 60—100, 220-240)
interspersed with periods of stability (day 150 providing an exception to this). This
suggests that an ARCH specification for the model disturbance U, may improve the fit of
(12.1); for details on formal statistical testing procedures for ARCH disturbances, see
Engle (1982).

To specify an ARCH(1) model for the disturbances, we extend (12.1) to

AP, =%.8 + U, (12.2)

U =V Ao +a, U~ (12.3)

where V, ~ N(0, 1). We now deduce conditional moments of the disturbance U, holding
U,_, fixed at a specific value u,_;. The conditional mean and variance of U, are
E[U, | Ui =u,_;]1=0 and Var(U; | U_i =u_)=a; +a,u |, respectively. These
results imply that AP, | Uiy =u1) ~N@E; . B, ay + uf_l). The likelihood function is
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the product of the distribution of the initial condition and the conditional distributions; the
theory behind this construction is similar to that discussed in Example 4 of Chapter 11.
Given the initial condition Uy = 0, the likelihood is

2
_ 1 —(Ap, - %1.B)
HO= \/277(1/1 exp[ 2 ]

n R 2
I exp[ - (Ap,~%.5) ]
)

(12.4)

)
=2 27 (a) +ay U, 2(a + a2 uy)

where Ap, is the datum observed on AP; and u; = Ap, —X;.B3, for t=1, ..., n. We now
enter the log-likelihood into Mathematica. It is convenient to express the log-likelihood in

terms of u;:
Clear|[n];
loglé =
—u; 2 n “Ue
EXP[Z_;{ EXP[ 2 (al +a2u,) ]
V2rmal &, \/27r(a1+a2u§_1)

{u, € Reals, al > 0}] // Expand

|-

FullSimplify [ Log [

2

7& B Log[al] _ouy

5 nLog[2 ] 5 2ol

1< , 1< u?

— L 1 2 N -t
5 ; oglol +o2uly,c] - 3 2y alvoz .,

To obtain the observed log-likelihood, we first enter in the value of n; we then re-
define the regressors in X, reducing the number of regressors from five down to just the
two significant regressors (takeover and disclosure) from the random walk model fitted
previously:

n =239; xdata = Transpose|[ {x2, x4}];
Next, we enter the disturbances u, defined, via (12.2), as U, = AP, — ;. 3:
uvec = Ap - xdata.{B2, B4};
Finally, we create a set of replacement rules called urules:3
urules = Table[u; » uvec[i], {i, n}]: Short [urules]
{ur > 0., u; >0.13, <«<236>, uz3g »>-0.11}

Substituting urules into the log-likelihood yields the observed log-likelihood:

obslogLé = logLé /. urules;



388 CHAPTER 12 §12.3

Note that our Mathematica inputs use the parameter notation (32, £4, al, o2) rather
than the neater subscript form (B,, B4, @1, @,); this is because FindMinimum /
FindMaximum does not handle subscripts well.4

We undertake maximum likelihood estimation of the parameters (8., B4, a1, @2)
with FindMaximum. To begin, we apply it blindly, selecting as initial values for (5,, 84)
the estimates from the random walk model, and choosing arbitrary initial values for a;
and a»:

sol = FindMaximum [obslogL&,
(B2, .675171}, {B4, .190171}, {al, 1}, {a2, 1}]

— FindMinimum: : fmnum :
Objective function 122.878 +375.42 1 is not real at
{B2, B4, al, a2} = {0.675165, 0.190167, - <<19>>, 0.988813}.
— FindMinimum: : fmnum :
Objective function 122.878 +375.42 1 is not real at
{B2, B4, al, a2} = {0.675165, 0.190167, - <<19>>, 0.988813}.
— FindMinimum: : fmnum :
Objective function 122.878 +375.42 1 is not real at
{B2, B4, al, a2} = {0.675165, 0.190167, - <<19>>, 0.988813}.

— General::stop : Further output of FindMinimum: :fmnum will
be suppressed during this calculation.

Why has it crashed? Our first clue comes from the error message, which tells us that the
observed log-likelihood ‘is not real’ for some set of values assigned to the parameters. Of
course, all log-likelihoods must be real-valued at all points in the parameter space, so the
problem must be that FindMaximum has drifted outside the parameter space. Indeed,
from the error message we see that @; has become negative, which may in turn cause the
conditional variance, Var (AP, | (Uis1 = u;1)) = a; + @, u> | to become negative, causing
Mathematica to report a complex value for log(e; + @, u? ). It is easy to see that if
a, =0, the ARCH model, (12.2) and (12.3), reduces to the random walk model (12.1) in
which case @; = 02, so we require @; > 0. Similarly, we must insist on @, = 0. Finally,
Engle (1982, Theorem 1) derives an upper bound for @, which must hold if higher order
even moments of the ARCH(1) process are to exist. Imposing a, < 1 ensures that the
unconditional variance, Var(U,), exists.

In order to obtain the ML estimates, we need to incorporate the parameter restrictions
a; >0and 0 < a, < 1 into Mathematica. There are two possibilities open to us:

(i) touse FindMaximum as a constrained optimiser, or

(ii) to re-parameterise the observed log-likelihood function so that the constraints are not
needed.

For approach (i), we implement FindMaximum with the constraints entered at the
command line; for example, we might enter:

soll = FindMaximum|[obsloglLo, {B2, .675171}, {B4, .190171},
{al, 1, 0.00001, 100}, {a2, 0.5, 0, 1}, MaxIterations - 40]

{243.226, {82 > 0.693842,
B4 - 0.191731, ol - 0.00651728, a2 - 0.192958}}
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In this way, FindMinimum / FindMaximum is being used as a constrained optimiser.
The constraints entered above correspond to 0.00001 < a; < 100 and 0 < @, < 1. Also,
note that we had to increase the maximum possible number of iterations to 40 (10 more
than the default) to enable FindMinimum / FindMaximum to report convergence.
Unfortunately, FindMinimum / FindMaximum often encounters difficulties when
parameter constraints are entered at the command line.

Approach (ii) improves on the previous method by re-parameterising the observed
log-likelihood in such a way that the constraints are eliminated. In doing so,
FindMinimum / FindMaximum is implemented as an unconstrained optimiser, which
is a task it can cope with. Firstly, the constraint a; > 0 is satisfied for all real y; provided
a; = e” . Secondly, the constraint 0 < @, < 1 is (almost) satisfied for all real y, provided
@, = (1 +exp(y,))"'. A replacement rule is all that is needed to re-parameterise the
observed log-likelihood:

- ¥l [
obslogLA = obslogLé /. {al e’ , a2 » 1 + o },

We now attempt:

sol2 = FindMaximum [obslogLA,
{B2, .675171}, {B4, .190171}, {¥1, 0}, {¥2, 0}]

{243.534, {2 ->0.677367,
B4 - 0.305868, y1 - -5.07541, y2 - 1.02915}}

The striking feature of this result is that even though the starting points of this and our
earlier effort are effectively the same, the maximised value of the observed log-likelihood
yielded by the current solution so12 is strictly superior to that of the former sol1:

sol2[1] > soll[1]

True

It would, however, be unwise to state unreservedly that sol2 represents the ML
estimates! In practice, it is advisable to experiment with different starting values. Suppose,
for example, that the algorithm is started from a different location in the parameter space:

sol3 = FindMaximum [obslogLA,
{B2, .675171}, {B4, .190171}, {¥1l, -5}, {¥2, 0}]

{243.534, {2 ->0.677263,
B4 - 0.305021, ¥y1 - -5.07498, y2 - 1.03053}}

This solution is slightly better than the former one, the difference being detectable at the
5™ decimal place:

NumberForm [sol2[1], 9]
NumberForm [sol3[1], 9]

243.53372

243.533752
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Nevertheless, we observe that the parameter estimates output from both runs are fairly
close, so it seems reasonable enough to expect that sol3 is in the neighbourhood of the
solution.>

There are still two features of the proposed solution that need to be checked, and
these concern the gradient:

g = Grad[obslogLA, {32, B4, ¥yl1l, ¥2}]:
g /. sol3[2]

{0.0553552, 0.000195139, 0.0116302, -0.000123497}
and the Hessian:

h = Hessian[obslogLA, {B2, B4, ¥l, ¥2}]:
Eigenvalues[h /. sol3[2]]

{-359.682, -96.3175, -79.1461, -2.60905}

The gradient at the maximum (or minimum or saddle point) should disappear —but this is
far from true here. It would therefore be a mistake to claim that so13 is the ML estimate!
On the other hand, all eigenvalues at sol3 are negative, so the observed log-likelihood is
concave in this neighbourhood. This is useful information, as we shall see later on. For
now, let us return to the puzzle of the non-zero gradient!

Why does FindMinimum / FindMaximum fail to detect a non-zero gradient at
what it claims is the optimum? The answer lies with the algorithm’s stopping rule. Quite
clearly, FindMinimum / FindMaximum does not check the magnitude of the gradient,
for if it did, further iterations would be performed. So what criterion does FindMinimum
use in deciding whether to stop or proceed to a new iteration? After searching the
documentation on FindMinimum, the criterion is not revealed. So, at this stage, our
answer is incomplete; we can only say for certain what criterion is not used. Perhaps, like
many optimisers, FindMinimum iterates until the improvement in the objective function
is smaller than some critical number? Alternatively, perhaps FindMinimum iterates until
the absolute change in the choice variables is smaller than some critical value? Further
discussion of stopping rule criteria appears in §12.5.

Our final optimisation assault utilises the fact that, at sol3 (our current best
‘solution’), we have reached a neighbourhood of the parameter space in which the
observed log-likelihood is concave, since the eigenvalues of the Hessian matrix are
negative at sol13. In practice, it is nearly always advisable to ‘finish off” an optimisation
with iterations of the Newton—Raphson algorithm, provided it is computationally feasible
to do so. This algorithm can often be costly to perform, for it requires computation of the
Hessian matrix at each iteration, but this is exactly where Mathematica comes into its own
because it is a wonderful differentiator! And for our particular problem, provided that we
do not print it to screen, the Hessian matrix takes less than no time for Mathematica to
compute —as we have already witnessed when it was computed for the re-parameterised
observed log-likelihood and stored as h. The Newton—Raphson algorithm can be run by
supplying an option to FindMaximum. Starting our search at so13, we find:
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sol4 = FindMaximum [obslogLA,
{B2, 0.677263}, {B4, 0.305021},
{¥1l, -5.07498}, {y2, 1.03053},
Method - Newton]

{243.534, {2 ->0.677416,
B4 - 0.304999, y1 - -5.07483, y2 >1.03084}}

Not much appears to have changed in going from sol3 to sol4. The value of the
observed log-likelihood increases slightly at the 6™ decimal place:

NumberForm [sol3[[1], 10]
NumberForm [sol4[[1], 10]

243.5337516
243.5337567

which necessarily forces us to replace sol3 with sol4, the latter now being a possible
contender for the maximum. The parameter estimates alter slightly too:

sol3[2]

{B2->0.677263, 4 - 0.305021,
¥yl -5 -5.07498, y2 - 1.03053}

sol4[2]

{B2 ->0.677416, 34 - 0.304999,
¥yl - -5.07483, y2 >1.03084}

But what about our concerns over the gradient and the Hessian?

g /. solda[2]

{0.0000131549, -6.90917x1077,
4.09054x107%, 3.40381x1077}

Eigenvalues[h /. sol4[2]]

{-359.569, -96.3068, -79.1165, -2.60887}

Wonderful! All elements of the gradient are numerically much closer to zero, and the
eigenvalues of the Hessian matrix are all negative, indicating that it is negative definite.
FindMinimum / FindMaximum has, with some effort on our part, successfully
navigated its way through the numerical optimisation maze and presented to us the point
estimates that maximise the re-parameterised observed log-likelihood. However, our work
is not yet finished! The ML estimates of the parameters of the original ARCH(1) model
must be determined:



392 CHAPTER 12 §12.3

1

{B2, B4, e,
1+ex?

} 7. sol4[2]
{0.677416, 0.304999, 0.00625216, 0.262921}

We conclude our ‘journey’ by presenting the ML estimates in Table 2.

Estimate

takeover 0.677416
disclosure 0.304999
a; 0.006252

1) 0.262921

Table 2: ML estimates of the ARCH(1) model

I 12.4 Asymptotic Inference

Inference refers to topics such as hypothesis testing and diagnostic checking of fitted
models, confidence interval construction, within-sample prediction, and out-of-sample
forecasting. For statistical models fitted using ML methods, inference is often based on
large sample results, as ML estimators (suitably standardised) have a limiting Normal
distribution.

12.4 A Hypothesis Testing

Asymptotic inference is operationalised by replacing unknowns with consistent estimates.
To illustrate, consider the Gamma(a, ) model, with mean u = a 8. Suppose we want to
test

Hy: u=uy against Hj: u+ W

where (p € R, is known. Letting it denote the ML estimator of u, we find (see Example 4
for the derivation):

Vi (= ) -5 N, a B2).

Assuming Hj to be true, we can (to give just two possibilities) base our hypothesis test on
either of the following asymptotic distributions for fi:

IS N(Ho, %@[Af) or % N(uo. %Hoﬁ)~

Depending on which distribution is used, it is quite possible to obtain conflicting
outcomes to the tests. The potential for arbitrary outcomes in asymptotic inference has, on
occasion, ‘ruffled the feathers’ of those advocating that inference should be based on
small sample performance!
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@ Example 3: The Gamma or the Exponential?

In this example, we consider whether there is a statistically significant improvement in
using the Gamma(a, 8) model to fit the Nerve data (Example 2) when compared to the
Exponential(A) model (Example ). In a Gamma distribution, restricting the shape
parameter « to unity yields an Exponential distribution; that is, Gamma(l, 8) =
Exponential(f). Hence, we shall conduct a hypothesis test of

Hy: a=1 aganst H,:a+l.

We use the asymptotic theory of ML estimators to perform the test of H, against H,.
Here is the pdf of X ~ Gamma(a, ):

xo-1 @-%/B
f= - domain[f] = {x, 0, }&& {a>0, B> 0};
T[a] B*

Since the MLE is regular (conditions la, 2, 3, 4a, and 5a are satisfied; see §11.4 D and
§11.5 A),

Vi (0-60) -5 N, i)
where @ denotes the MLE of 0y = (@, B). We can evaluate iy!:

Inverse [FisherInformation[{a, B}, £]] // Simplify

a
-l+a PolyGamma [1,a] l-a PolyGamma [1, a]

B2 PolyGamma [1, a]
l-a PolyGamma [1, o] -1+ PolyGamma [1,a]

Let o2 denote the top left element of i,!; note that > depends only on @. From the (joint)
asymptotic distribution of 8, we find

a s N(a/, %0’2).

We may base our test statistic on this asymptotic distribution for &, for when @ =1 (i.e.
H, is true), it has mean 1, and standard deviation:

1
s:\/_ a /.{a>1, n>799} // N
n -1+aPolyGamma[l, a]

0.0440523

Because the alternative hypothesis H; is uninformative (two-sided), Hy will be rejected if
the observed value of & (1.17382 was obtained in Example 2) is either much larger than
unity, or much smaller than unity. The p-value (short for ‘probability value’; see, for
example, Mittelhammer (1996, pp. 535-538)) for the test is given by
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P(

a—1]>1.17382-1) = 1 - P(0.82618 < & < 1.17382)

which equals:

1 (a-1)°
g= —— Exp[-———
sV2a2rn 2s

|]; domain[g] = {&, -c°, =};

1- (Prob[1.17382, g] - Prob[0.82618, g])

0.0000795469

As the p-value is very small, this is strong evidence against Hy. ]

@ Example 4: Constructing a Confidence Interval

In this example, we construct an approximate confidence interval for the mean u = @ of
the Gamma(a, ) distribution using an asymptotic distribution for the MLE of the mean.

From the previous example, we know \/ n (@ - 00) i> N(Q, iy 1), where 6 is the MLE
of 6y = (a, B). As u is a function of the elements of 6,, we may apply the Invariance
Property (see §11.4 E) to find

N d ou _ ._ ou
\/;(/1_/1) — N( > W Xlol X %)

mathStatica derives the variance of the limit distribution as:

xo-1 @-%/B
f= - domain[f] = {x, 0, ©}&& {a>0, B> 0};
T[a] B

Grad[a 3, {a, B}].Inverse[FisherInformation[{a, B}, £]].
Grad[a 3, {a, B}] // Simplify

a B?

Consequently, we may write Vi (- £ NO, ap?). Unfortunately, a confidence
interval for ¢ cannot be constructed from this asymptotic distribution, due to the presence
of the unknown parameters @ and 5. However, if we replace @ and § with, respectively,
the estimates & and 3, we find®

IS N(ﬂ, %aﬁz)

From this asymptotic distribution, an approximate 100 (1 — w) % confidence interval for u
can be constructed; it is given by

R [ a2
fxziopNaB /n
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where zi_2 is the inverse cdf of the N(0, 1) distribution evaluated at 1 — w /2.

For the Nerve data of Example 2, with ML estimates of 1.17382 for «, and 0.186206
for 3, an approximate 95% confidence interval for u is:’

A~ S ~

1.17382; B =0.186206; fi=ap;

Q
1

0.05
\/_Z_InverseErf[O, -1+2 (1— )],

{ﬁ-z\/aéznss, ﬁ+z\/a/§2/799}

{0.204584, 0.232561}

12.4 B Standard Errors and t-statistics

When reporting estimation results, it is important to mention, at the very least, the
estimates, the standard errors of the estimators, and the f-statistics (e.g. see Table 1). For
ML estimation, such details can be obtained from an asymptotic distribution for the
estimator. It is insufficient to present just the parameter estimates. This, for example,
occurred for the ARCH model estimated in §12.3, where standard errors and ¢-statistics
were not presented (see Table 2). This is because FindMinimum / FindMaximum only
returns point estimates of the parameters, and the optimised value of the observed log-
likelihood. To report standard errors and #-statistics, further programming must be done.

For regular ML estimators such that
Vi (0-60) 5 N, ig")
with an asymptotic distribution:
& < N6y, (nip)™")

we require a consistent estimator of the matrix (n io)_1 in order to operationalise
asymptotic inference, and to report estimation results. Table 3 lists three such estimators.

Fisher (n i@)_l
-1
Hessian ( BGBBHT log L(@))

n -1
Outer-product (Z ( 50 log f(X,, 0)) (% log f(X,-; g))T]

i=1

Table 3: Three asymptotically equivalent estimators of (nio)”"
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Each estimator relies on the consistency of the MLE 6 for 6,. All three are asymptotically
equivalent in the sense that n times each estimator converges in probability to iy'. The
first estimator, labelled ‘Fisher’, was used in Example 4. The second, ‘Hessian’, is based
on regularity condition Sa(ii) (see §11.5 A). This estimator is quite popular in practice,
having the advantage over the Fisher estimator that it does not require solving an
expectation. The ‘Outer-product’ estimator is based on the definition of Fisher
Information (see §10.2D, and condition 4a in §11.5 A). While it would appear more
complicated than the others, it can come in handy if computation of the Hessian estimator
becomes costly, for it requires only one round of differentiation.

If the MLE in a non-identically distributed sample (see §11.5 B) is such that,
A d (o)1
v (B-6)) — N0, G5 )

then to operationalise asymptotic inference, the Hessian and Outer-product estimators
. . . (e -1 . . .
given in Table 3 may be used to estimate (n lg )) ; however, the Fisher estimator is now

19‘1 , Where Iy denotes the Sample Information on 6 (see §10.2 E).

@ Example 5: Income and Education: An Exponential Regression Model

In Example 15 of Chapter 11, we considered the simple Exponential regression model:
Y | (X = x) ~ Exponential(exp(a + 8 x)) (12.5)
where regressor X = x € R, and parameter 6 = (a, 8) € R?. Here is the pdf f(y | X =x;0):

£ =;Exp[ Y ];

Exp[a + f8 x] _Exp[a+[3x]

domain[£f] {y, 0, <} && {a € Reals, 3 € Reals, x € Reals};

Greene (2000, Table A4.1) gives hypothetical data on the pair (Y;, X;) for n =20
individuals, where Y denotes Income ($000s per annum) and X denotes years of
Education. Here is the Income data:

Income = {20.5, 31.5, 47.7, 26.2, 44.0, 8.28,

30.8, 17.2, 19.9, 9.96, 55.8, 25.2, 29.0,
85.5, 15.1, 28.5, 21.4, 17.7, 6.42, 84.9};

... and here is the Education data:

Education = {12, 16, 18, 16, 12, 12, 16, 12,
1o, 12, 16, 20, 12, 16, 10, 18, 16, 20, 12, 16};

Figure 6 illustrates the data in the form of a scatter diagram.



§12.4B MAXIMUM LIKELIHOOD ESTIMATION IN PRACTICE 397

Income
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Fig. 6: The Income—Education data

Using ML methods, we fit the Exponential regression model (12.5) to this data. We begin
by entering the observed log-likelihood:

obslogLé =Log[ﬁ (E/.{y->vi,s x—>xi})] /.

i=1

{n-> 20, y; :» Income[i]], x; :» Education[i]}

—42.9e %208 _76.2e %188 _336.1 %100
135.36 e %128 _ 35, %108 _200-2927

We obtain the ML estimates using FindMaximum’s Newton—Raphson algorithm:

sol6 = FindMaximum [obslogLo, {a, 0.1}, {B, 0.2},
Method - Newton]

(-88.1034, {o0—>1.88734, B 0.103961}}

Thus, the observed log-likelihood is maximised at a value of —88.1034, with ML
estimates of @ and g reported as 1.88734 and 0.103961, respectively.

Next, we compute the Fisher, Hessian and Outer-product estimators given in Table 3.
The Fisher estimator corresponds to the inverse of the (2x2) Sample Information matrix
derived in Example 15 of Chapter 11. It is given by:

Fisher = Inverse[

n

n Tl Xi
a g | /- {n>20, x; :-)Education[[i]]}] // N
DNIPE SR WIRE 51

( 1.20346 70.0790043)
-0.0790043 0.00541126
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The Hessian estimator is easily computed using mathStatica’s Hessian function:

hessian = Inverse[-Hessian[obslogLe, {a, B}] /. sole[2]]

1.54467 -0.102375
-0.102375 0.00701196

Calculating the Outer-product estimator is more involved, so we evaluate it in four stages.
First, we calculate the score % log f(x;; 0) using mathStatica’s Grad function:

grad = Grad[Log[f /. {y>vi, x> x:}], {a, B}]

(-l+e Py, x5 (-1+e*Fx

Yi)}

Next, we form the outer product of this vector with itself —the distinctive operation that
gives the estimator its name:

op = Outer [Times, grad, grad]

(-lrefmy)®  x (-lee By

P (-l+e™P®oyy)

2

2

x; (ml+e PR yi)T x

We then Map the sample summation operator across each element of this matrix (this is
achieved by using the level specification {2 }):

opS = Map[i# &, op, {2}]
i

n n
D (Fleefroynt o N x,
i=1 i=1
n n
Z. X (~1+eBx y)? Z x4
i=1 i=1

(-1+efxy,)’

(-1+efxy,)’

Finally, we substitute the ML estimates and the data into opS, and then invert the
resulting matrix:

outer = Inverse|[opS /. Flatten[{solo[2],
n- 20, y; :» Income[i]], x; :» Education[i]}]]

5.34805 -0.342767
-0.342767 0.0225022

In this particular case, the three estimators yield different estimates of the asymptotic

variance-covariance matrix (this generally occurs). The estimation results for the trio of
estimators are given in Table 4.
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Fisher Hessian Outer
Estimate SE TStat SE TStat SE TStat
a 1.88734 | 1.09702 1.72042 | 1.24285 1.51856 | 2.31259 0.81612
£ 0.10396 | 0.07356 1.41326 | 0.08374 1.24151 | 0.15001 0.69304

Table 4: Estimation results for the Income—Education data

The ML estimates appear in the first column (Estimate). The associated estimated
asymptotic standard errors appear in the SE columns (these correspond to the square root
of the elements of the leading diagonal of the estimated asymptotic variance-covariance
matrices). The t-statistics are in the TStat columns (these correspond to the estimates
divided by the estimated asymptotic standard errors; these are statistics for the tests of
Hy:a=0 and Hy: B=0). These results suggest that Education is not a significant
explanator of Income, assuming model (12.5). |

I 12.5 Optimisation Algorithms

12.5 A Preliminaries

The numerical optimisation of a function (along with the related task of solving for the
roots of an equation) is a problem that has attracted considerable interest in many areas of
science and technology. Mathematical statistics is no exception, for as we have seen,
optimisation is fundamental to estimation, whether it be for ML estimation or for other
estimation methods such as the method of moments or the method of least squares.
Optimisation algorithms abound, as even a cursory glance through Polak’s (1971) classic
reference work will reveal. Some of these have been coded into FindMinimum, but for
each one that has been implemented in that function, there are dozens of others omitted.
Of course, the fact that there exist so many different types of algorithms is testament to the
fact that every problem is unique, and its solution cannot necessarily be found by applying
one algorithm. The various attempts at estimating the ARCH model in §12.3 provide a
good illustration of this.

We want to solve two estimation problems. The first is to maximise a real, single-
valued observed log-likelihood function with respect to the parameter 6. The point
estimate of 6, is to be returned, where 6, denotes (as always) the true parameter value.
The second is to estimate the asymptotic standard errors of the parameter estimator and
the asymptotic f-statistics. This can be achieved by returning, for example, the Hessian
evaluated at the point estimate of 6, (i.e. the Hessian estimator given in Table 3 in §12.4).
It is fair to say that obtaining ML estimates is the more important task; however, the two
taken together permit inference using the asymptotic distribution.

The algorithms that we discuss in this section address the dual needs of the
estimation problem; in particular, we illustrate the Newton—Raphson (NR) and the
Broydon—Fletcher—Goldfarb—Shanno (BFGS) algorithms. The NR and BFGS algorithms
are options in FindMinimum using Method->Newton and Method-
QuasiNewton, respectively. However, in its Version 4 incarnation, FindMinimum
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returns only a point estimate of 6 ; other important pieces of information such as the final
Hessian matrix are not recoverable from its output. This is clearly a weakness of
FindMinimum which will hopefully be rectified in a later version of Mathematica.

Both the NR and BFGS algorithms, and every other algorithm implemented in
FindMinimum, come under the broad category of gradient methods. Gradient methods
form the backbone of the literature on optimisation and include a multitude of approaches
including quadratic hill-climbing, conjugate gradients, and quasi-Newton methods. Put
simply, gradient methods work by estimating the gradient and Hessian of the observed log-
likelihood at a given point, and then jumping to a superior solution which estimates the
optimum. This process is then repeated until convergence. Amongst the extensive
literature on optimisation using gradient methods, we refer in particular to Polak (1971),
Luenberger (1984), Gill et al. (1981) and Press et al. (1992). A discussion of gradient
methods applied to optimisation in a statistical context appears in Judge et al. (1985).

Alternatives to optimisation based on gradient methods include direct search
methods, simulated annealing methods, taboo search methods, and genetic algorithms.
The first—direct search—involves the adoption of a search pattern through parameter
space comparing values of the observed log-likelihood at each step. Because it ignores
information (such as gradient and Hessian), direct search methods are generally regarded
as inferior. However, the others—simulated annealing, taboo search, and genetic
algorithms —fare better and have much to recommend them. Motivation for alternative
methods comes primarily from the fact that a gradient method algorithm is unable to
escape from regions in parameter space corresponding to local optima, for once at a local
optimum a gradient algorithm will not widen its search to find the global optimum — this
is termed the problem of multiple local optima.8

The method of simulated annealing (Kirkpatrick ef al. (1983)) attempts to overcome
this by allowing the algorithm to move to worse locations in parameter space, thereby
skirting across local optima; the method performs a slow but thorough search. An attempt
to improve upon the convergence speed of the annealing algorithm is Ingber’s (1996)
simulated quenching algorithm. Yet another approach is the taboo method (Glover et al.
(1993)) which is a strategy that forces an algorithm (typically a gradient method) to move
through regions of parameter space that have not previously been visited. Genetic
algorithms (Davis (1991)) offer an entirely different approach again. Based on the
evolutionary notion of natural selection, combinations of the best intermediate solutions
are paired together repeatedly until a single dominant optimum emerges.

When applying a gradient method to an observed log-likelihood which has, or may
have, multiple local optima, it is advisable to initiate the algorithm from different locations
in parameter space. This approach is adequate for the examples we present here, but it can
become untenable in higher-dimensional parameter spaces.

As outlined, the estimation problem has two components: estimating parameters and
estimating the associated standard errors of the estimator. Fortunately, by focusing on the
solution for the first component, we will, as a by-product, achieve the solution for the
second. We begin by defining the penalty function,which is the negative of the observed
log-likelihood function:

p(0) = —log L(6). (12.6)
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Minimising the penalty function for choices of 6 yields the equivalent result to maximum
likelihood. The reason for defining the penalty function is purely because the optimisation
literature is couched in terms of minimisation, rather than maximisation. Finally, we
assume the parameter 6, a (kx 1) vector, is of dimension k = 2 and such that 8 € ® = RF.
Accordingly, optimisation corresponds to unconstrained minimisation over choice
variables defined everywhere in two- or higher-dimensional real space.

Before proceeding further, we make brief points about the k = 1 case. The case of
numerical optimisation over the real line (i.e. corresponding to just one parameter, since
k = 1) is of lesser importance in practice. If univariate optimisation is needed, line search
algorithms such as Golden Search and methods due to Brent (1973) should be applied; see
Luenberger (1984) for discussion of these and other possibilities. Mathematica’s
FindMinimum function utilises versions of these algorithms, and our experience of its
performance has, on the whole, been good. Determining in advance whether the derivative
of the penalty function can be constructed (equivalent to the negative of the score) will
usually cut down the number of iterations, and can save time. If so, a single starting point
need only be supplied (i.e. it is unnecessary to compute the gradient and supply it to the
function through the Gradient option). Univariate optimisation can, however, play an
important role in multivariate optimisation by determining step-length optimally.

Finally, as we have seen, parametric constraints often arise in statistical models. In
these cases, the parameter space ® = {#: 8 € ®} is a proper subset of k-dimensional real
space or may be degenerate upon it (i.e. ® c R¥). This means that maximum likelihood/
minimum penalty estimation requires constrained optimisation methods. Our opinion on
FindMinimum as a constrained optimiser—in its Version 4 incarnation—is that we
cannot recommend its use. The approach that we advocate is to transform a constrained
optimisation into an unconstrained optimisation, and use FindMinimum on the latter.
This can be achieved by re-defining parameter 6 to a new parameter A = g(6) in a manner
such that A € R?, where ¢ <k. Of course, the trick is to determine the appropriate
functional form for the transformation g. Once we have determined g and optimised with
respect to A, recovery of estimation results (via the Invariance Property) pertinent to 6 can
be achieved by using replacement rules, as well as by exploiting Mathematica’s excellent
differentiator.

12.5 B Gradient Method Algorithms

An algorithm (gradient method or otherwise) generates a finite-length sequence such as
the following one:

b0y By s O (12.7)

where the bracketed subscript indicates the iteration number. Each @(j) eRk, j=0,...,r,
resides in the same space as the 6, and each can be regarded as an estimate of o:

6 = arg max, . g+ log L(f) = argming g« p(6).

The sequence (12.7) generally depends on three factors: (i) the point at which the
algorithm starts 9(0), (ii) how the algorithm progresses through the sequence; that is, how
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é(j+1) is obtained from é(j), and (iii) when the process stops. Of the three factors, our
attention focuses mainly on the second —the iteration method.

Initialisation

Starting values are important in all types of optimisation methods — more so, perhaps, for
gradient method algorithms because of the multiple local optima problem. One remedy is
to start from different locations in the parameter space in order to trace out the surface of
the observed log-likelihood, but this may not appeal to the purist. Alternative methods
have already been discussed in §12.5 A, with simulated annealing methods probably
worthy of first consideration.

The Iteration Method

Typically, the link between iterations takes the following form,
Oijeny = B4y + pp dj (12.8)

where the step-length y(;, € R, is a scalar, and the direction d; € R is a vector lying in
the parameter space. In words, we update our estimate obtained at iteration j, namely @( 0o
by moving in the direction d(;, by a step of length p;,.

The fundamental feature of algorithms coming under the umbrella of gradient
methods is that they are never worsening. That is,

p@o) = p@a)) = - = p@,-1)) = p@).
Thus, each member in the sequence (12.7) traces out an increasingly better approximation

for minimising the penalty function. Using these inequalities and the relationship (12.8),
forany j =0, ..., r, we must have

P8y + 1y diy) = @) =< 0. (12.9)
The structure of a gradient method algorithm is determined by approximating the left-hand

side of (12.9) by truncating its Taylor series expansion. To see this, replace Hj) in (12.9)
with u, and take a (truncated) Taylor series expansion of the first term about u = 0, to yield

1 ps@) - d

where the (kx1) vector p, denotes the gradient of the penalty function. Of course, p, is
equivalent to the negative of the score, and like the score, it too disappears at @; that is,
De (0) = 0. Replacing the left-hand side of (12.9) with the Taylor approximation, finds

pe(@).dy <0 (12.10)

for u is a positive scalar. Expression (12.10) enables us to construct a range of differing
possibilities for the direction vector. For example, for a symmetric matrix W(;, we might
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select direction according to
dijy = =Wy - pe (@) (12.11)

because then the left-hand side of (12.10) is a weighted quadratic form in the elements of
vector p,, the weights being the elements of matrix W;; that is,

Pe@) - diy = —pe@y)- Waj - pe(@ip). (12.12)

This quadratic form will be non-positive provided that the matrix of weights W, is
positive semi-definite (in practice, W; is taken positive definite to ensure strict
improvement). Thus, the algorithm improves from one iteration to the next until a point
Dg (@(r)) =0 is reached within numerical tolerance.

Selecting different weight matrices defines various iterating procedures. In particular,
four choices are NR =Newton—Raphson, Score=Method of Scoring, DFP=Davidon—
Fletcher—Powell and BFGS = Broydon—Fletcher—Goldfarb—Shanno:

NR: W, =-H;' (12.13)

Score: W, =1, (12.14)

B (W(j) . Apg) X (W(j) . Apg)T
Apg Apg .W(j) Apg

A6 x
DFP: W(j+1) = W(j) + A@ (1215)

BFGS: W1, = (asfor DFP) + (Ap, . W; . Ap,)

T
A Wo-bdp, ) (_ab __ Wu-Ap, (12.16)
AO.Ap,  Apg- Wi Ap, AD.Ap,  Apg- Wi Ap,

X

The notation used here is the following:

H;,  is the Hessian of the observed log-likelihood function evaluated at 6 = 6 )
I is the Sample Information matrix evaluated at 6 = 6 )
Af = @( B~ @( 1) is the change in the estimate from the previous iteration, and

Ap, = pg (@(j)) — Dg (@(j—n) is the change in the gradient.

The DFP and BFGS weighting matrices appear complicated, but as we shall see in the
following section, implementing them with Mathematica is reasonably straightforward. Of
the algorithms (12.13)—(12.16), FindMinimum includes the NR algorithm
(Method - Newton) and the BFGS algorithm (Method —» QuasiNewton).

To illustrate, we shall obtain the iterator for the Method of Scoring. Combine (12.8),
(12.11) and (12.14), to yield
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b1y = 60y — uijy 1) - ps©)

which, to be complete, requires us to supply a step-length u;. We might, for instance,
select step-length to optimally improve the penalty function when moving in direction
dijy=-1I3) - ps (Aj)) from 6;;); this is achieved by solving

g = argming g, p(ly) — 11 - pe(@))-

Of course, this is a univariate optimisation problem that can be solved by numerical means
using FindMinimum. Unfortunately, experience suggests that determining step-length in
this manner can be computationally inefficient, and so a number of alternatives have been
proposed. In particular, one due to Armijo is implemented in the examples given below.

A final point worth noting concerns estimating the asymptotic standard error of the
estimator. As mentioned previously, this estimate is obtained as a by-product of the
optimisation. This is because an estimate of the asymptotic variance-covariance matrix is
given by the final weighting matrix W, since the estimates of the asymptotic standard
error are the square root of the main diagonal of this matrix. The NR weight (12.13)
corresponds to the Hessian estimator, and the Score weight (12.14) to the Fisher estimator
(see Table 3); the DFP and BFGS weights are other (consistent) estimators. However, the
default algorithm implemented in FindMinimum (the conjugate gradient algorithm) does
not yield, as a by-product, the estimate of the asymptotic variance-covariance matrix.

o Stopping Rules

Algorithms converge (asymptotically) to 6; nevertheless, from a practical view, the
sequence (12.7) must be terminated in finite time, and the estimate @(,) of & must be
reported. This therefore requires that we define numerical convergence. How this is done
may vary. Possibilities include the following:

(i) convergence defined according to epsilon change in parameter estimates:
stop if ||@(,) - 9(,_1)” <€
(i) convergence defined according to epsilon change in the penalty function:
stopif | p@y) - p@r-1)) | <&
(iii) convergence defined according to the gradient being close to zero:
stop if ||pg(@(,))|| <&

(iv) convergence defined according to the gradient element with the largest absolute value
being close to zero:

stop if max( | pg(@(,)) |) <&
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where €1, €, €5 and €, are small positive numbers, | . | denotes the absolute value of the
argument, and || . || denotes the Euclidean distance of the argument vector from the origin
(the square root of the dot product of the argument vector with itself). The method we
favour is (iv).

Of course, picking just one rule out of this list may be inappropriate as a stopping
rule, in which case numerical convergence can be defined according to combinations of
(1), (ii), (iii) or (iv) holding simultaneously. Finally, (i)—(iv) hold if @(r) happens to locate
either a local maximum or a saddle point of the penalty function, so it is usually necessary
to check that the Hessian of the penalty function (equal to the negative of the Hessian of
the observed log-likelihood) is positive definite at 8.

I 12.6 The BFGS Algorithm

In this section, we employ the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm to
estimate a Poisson two-component-mix model proposed by Hasselblad (1969).

Data, Statistical Model and Log-likelihood

Our data—the Death Notice data—appears in Table 5. The data records the number of

death notices for women aged 80 or over, each day, in the English newspaper, The Times,
during the three-year period, 1910-1912.

Death Notices perday (X) : 0 1 2 3 4 5 6 7 8 9
Frequency (no.of days): 162 267 271 185 111 61 27 8 3 1

Table 5: Death Notice data

The data is interpreted as follows: there were 162 days in which no death notices
appeared, 267 days in which one notice appeared, ... and finally, just 1 day on which the
newspaper listed nine death notices. We enter the data as follows:

count = {162, 267, 271, 185, 111, 61, 27, 8, 3, 1};

As the true distribution of X = ‘the number of death notices published daily’ is
unknown, we shall begin by specifying the Poisson(y) model for X,

-y
PX=x)= ©2X xel0.1.2...) and yeR,

Then, the log-likelihood is:

e Y Yx Ny
Clear[G]; logLy = Log[ﬂ ( ] ]

G G G
-Y an + Log[v] anx 7ZLog[x!] TNy
x=0 x=0 x=0
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where, in order for SuperLog to perform its magic, we have introduced the
Subscript ny to index, element by element, the data in list count (so ng = 162,
n; =267, ...,ng = 1).9 Define G < ® to be the largest number of death notices observed
in the sample, so G = 9 for our data.l0 ML estimation in this model is straightforward
because the log-likelihood is concave with respect to y.ll This ensures that the ML
estimator is given by the solution to the first-order condition:

soly = Solve[Grad[logLy, ¥] == 0, y] // Flatten

ZGf xn
v 25—

Zx:O Ny
For our data, the ML estimate is obtained by inputting the data into the ML estimator,
soly, using a replacement rule:

soly =soly /. {G-» 9, n, »count[[x+1]} // N

{y—>2.15693}

We leave estimation of the standard error of the estimator as an exercise for the reader.12

When Hasselblad (1969) examined the Death Notice data, he suggested that the
sampled population was in fact made up of two sub-populations distinguished according
to season, since death rates in winter and summer months might differ. As the data does
not discriminate between seasons, Hasselblad proceeded by specifying an unknown
mixing parameter between the two sub-populations. We denote this parameter by w (for
details on component-mix models, see §3.4 A). He also specified Poisson distributions for
the sub-populations. We denote their parameters by ¢ and . Hasselblad’s Poisson two-
component mix model is

—¢ px - X
P(X:x):w@x!"’ +(1—w)%, xe{0. 1,2, ..}

where the mixing parameter w is such that 0 < w < 1, and the Poisson parameters satisfy
¢ > 0 and ¢ > 0. For Hasselblad’s model, the observed log-likelihood can be entered as:

Ny

] 7.

x! x!

G
e ? ¢* eV y*
obslogLA = Log[ W + (1-w)
x=0

{G—>9, n, »countfx+1], w-> ,¢>—>eb,z,k—>e°};

ea

Note that we have implemented a re-parameterisation of 6= (w, ¢, ¥) to A= g(0) =
(a, b, ¢) € R? by using a replacement rule (see the second line of input).

Due to the non-linear nature of the first-order conditions, ML estimation of the
unknown parameters requires iterative methods for which we choose the BFGS
algorithm.!3 Using FindMaximum, initialised at (a, b, ¢) = (0.0, 0.1, 0.2), finds:14



§12.6 MAXIMUM LIKELIHOOD ESTIMATION IN PRACTICE 407

FindMaximum [obslogLA, {a, 0.0}, {b, 0.1}, {c, 0.2},
Method -» QuasiNewton]

{-1989.95, {a—->0.575902, b>0.227997, ¢ > 0.9796}}

Using the estimates 0.575902, 0.227997 and 0.9796, for a, b and c, respectively, we can
obtain the ML estimates for w, ¢ and . Alas, with FindMinimum/FindMaximum, it
is not possible to inspect the results from each iteration in the optimisation procedure; nor,
more importantly, can we recover estimates of the asymptotic variance-covariance matrix
of the ML estimator of A. Without the asymptotic variance-covariance matrix, we cannot,
for example, undertake the inference described in §12.4. Thus, FindMinimum/
FindMaximum does not do all that we might hope for.

BFGS Algorithm

We now code the BFGS algorithm, and then apply it to estimate the parameters of
Hasselblad’s model. We begin by converting the re-parameterised observed log-likelihood
into a penalty function:

p = -obslogLA;

Our task requires the unconstrained minimisation of the penalty p with respect to A. Our
BFGS code requires that we define the penalty function pf and its gradient gradpf as
Mathematica functions of the parameters, using an immediate evaluation:

p;
Grad[p, {a, b, c}];

pf[{a_, b_, c_}]
gradpf[{a_, b_, c_}]

To see that this has worked, evaluate the gradient of the penalty function ata =b = ¢ =0:
g =gradpf[{0, 0, 0}]
{0, -634, -634}

We now present some simple code for each part of the BFGS algorithm (12.16). The
following module returns the updated approximation W(; to the negative of the inverse
Hessian matrix at each iteration:

BFGS[A6_, Agrad_, W_] :=
Module[{t1l, t2, t3, t4, t5, t6, t7},
tl = Outer [Times, A6, AO];
t2 = A6.Agrad;
t3 = W.Agrad;
t4 = Outer [Times, t3, t3];
t5 = Agrad.t3;
(* For DFP ignore the remaining lines
and return W+tl/t2-t4/t5 =*)
t6 =A0/t2-t3/t5;
t7 = Outer[Times, t6, t6];
W+tl/t2-t4/t5+t5t7]
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The BFGS updating expression can, of course, be coded as a one-line command.
However, this would be inefficient as a number of terms are repeated; hence, the terms t1
to t7 in BFGS.

The next component that is needed is a line search method for determining step-
length . There happen to be quite a few to choose from. For simplicity, we select a
relatively easy version of Armijo’s method as given in Polak (1971) (for a more detailed
version, see Luenberger (1984)):

Armijo[f_, 6_, grad_, dir_] :=
Module[{a =0.5, 3=0.65, u=1., £0, gd},
f0=f[6]; gd=grad.dir;
While[ f[6+udir] -£f0-uagd>0, u=Bul;: K]

This module essentially determines a feasible step-length u, but not necessarily an optimal
one. The first argument, £, denotes the objective function (our penalty function). Because
Armijo needs to evaluate £ at many points, the Armijo function assumes that f is a
Mathematica function like pf (not p). A more advanced method is Goldstein’s (again, see
Polak (1971) or Luenberger (1984)), where bounds are determined within which an
optimising search can be performed using, for example, FindMinimum (but remember to
transform to an unconstrained optimisation). The cost in undertaking this method is the
additional time it takes to determine an optimal step-length.

To set BFGS on its way, there are two initialisation choices required—ft(o) and
W) — which are the beginning parameter vector ‘guess’ and the beginning inverse
Hessian matrix ‘guess’, respectively. The success of our search can depend crucially on
these two factors. To illustrate, suppose we set ft(o) = (0,0, 0) and W =I5. From (12.8),
(12.11), and our earlier output, it follows that 1(1) = H) x(0, 634, 634). Determining step-
length, we find:

Armijo[pf, {0, 0, 0}, g, {0, 634, 634}]

— General::unfl : Underflow occurred in computation.
— General::unfl : Underflow occurred in computation.
— General::unfl : Underflow occurred in computation.

— General::stop : Further output of
General: :unfl will be suppressed during this calculation.

. and the algorithm has immediately run into troubles. The cause of these difficulties is
scaling (quantities such as Exp[-634] are involved in numeric computations).
Fortunately, a heuristic that can help to overcome this type of ill-conditioning is to enforce
scale dependence onto W(). A simple one that can often work is:

6.6
WO0[6_, grad_] := ——————— — IdentityMatrix[Length[6]]
grad.grad
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WO ensures that the Euclidean length of the initial direction vector from the origin matches
that of the initial starting parameter; that is, W, is forced to be such that direction
d(()) = _W(O)~ g(i(o)) satisfies

\/d<0)~d(0) = \/i(oriw) :

Of course, forcing W,o) to behave in this way always rules out selecting A¢) as a zero
vector as the initial parameter guess. For further details on other generally better methods
of scaling and pre-conditioning, see Luenberger (1984).

We now implement the BFGS algorithm using the parts constructed above. As the
starting point, we shall select:

A0 =1{0.0, 0.1, 0.2};

The code here closely follows Polak’s (1971) algorithm structure (given for DFP, but
equally applicable to BFGS). If convergence to tolerance is achieved, the Do loop outputs
the list ‘results’ which contains: (i) the number of iterations performed, (ii) the value
of the objective function at the optimum, (iii) the optimal parameter values, and (iv) the
final weight matrix W. If no output is produced, then convergence to tolerance has not
been achieved within 30 iterations. Irrespective of whether convergence has been achieved
or not, the final values of the parameters and the weight matrix are stored in memory and
can be inspected. Finally, the coding that is given here is very much in ‘bare bones’ form;

embellishments that the user might like (such as the output from each iteration W) can be
added as desired.

(*# Start iteration (iter=0) %)
A0 ={0.0, 0.1, 0.2};

g0 = gradpf [A0] ;

W=WO[AO0, gO0];

Do[ (* Subsequent iterations (maximum 30) =*)
d=-W.g0;
Al = A0 + Armijo[p£f, A0, g0, d] 4;
gl = gradpf [Al];
If[ Max[Abs[gl]] < 10°°,
W = BFGS[Al - A0, gl - g0, W];
Break|[results = {iter, -p£f[A1l], A1, W}] ]:
AX =21 - A0;
Ag =gl -g0;
(* Reset A0 and g0 for the next iteration =)
A0 =21; g0=gl;
W = BFGS [AX, Ag, W], {iter, 30}]

{26, -1989.95, {0.575862, 0.228008, 0.979605},

0.775792 -0.245487 -0.0810482
-0.245487 0.084435 0.0246111
-0.0810482 0.0246111 0.0093631
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The output states that the BFGS algorithm converged to tolerance after 26 iterations. The
ML estimates are a = 0.575862, b =0.228008 and ¢ = 0.979605; almost equivalent to the
point estimates returned by FindMaximum. At the estimates, the observed log-likelihood
is maximised at a value of —1989.95. The BFGS estimate of the asymptotic variance-
covariance matrix is the (3 x3) matrix in the output. Table 6 summarises the results.

Estimate SE TStat
a 0.575862  0.880791 0.653801
b 0.228008  0.290577 0.784673
0.979605  0.0967631 10.1237

Table 6: ML estimation results for the unrestricted parameters

Our stopping rule focuses on the gradient, stopping if the element with the largest
magnitude is smaller than 107°. Our choice of 107® corresponds to the default for
AccuracyGoal in FindMinimum. It would not pay to go much smaller than this, and
may even be wise to increase it with larger numbers of parameters.!> Other stopping rules
can be tried.1® Finally, the outputted W is an estimate of the asymptotic variance-

covariance matrix.

To finish, we present a summary of the ML estimates and their associated standard
errors and t-statistics for the parameters of the original Poisson two-component-mix
model. To do this, we use the Invariance Property, since the unrestricted parameters A are
linked to the restricted parameters 6 by the re-parameterisation A = g(6). Here, then, are
the ML estimates of the Poisson two-component-mix parameters 6 = (w, ¢, ¥):

solA = { a » results[3, 1],
b » results[3, 2],

c » results[3, 3] };

1

s016 = {w -
l+e®

, o> e, w»ec} /. soli
{w—->0.359885, ¢ > 1.2561, Yy > 2.6634}

That is, the ML estimate of the mixing parameter is & = 0.359885, and the ML estimates
of the Poisson component parameters are ¢ = 1.2561 and iy = 2.6634. Here is the estimate
of the asymptotic variance-covariance matrix (see (11.17)):

G=Grad[{

o e®, e°}, {a, b, c}];

G.W.Transpose[G] /. solA
0.0411708 0.0710351 0.0497281

0.0710351 0.133219 0.0823362
0.0497281 0.0823362 0.0664192
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We summarise the ML estimation results obtained using the BFGS algorithm in Table 7.

Estimate SE TStat
w 0.359885  0.202906 1.77366
1) 1.2561 0.364992 3.44143
¥ 2.6634 0.257719 10.3345

Table 7: ML estimation results for the Poisson two-component-mix model

Finally, it is interesting to contrast the fit of the Poisson model with that of the
Poisson two-component-mix model. Here, as a function of x € {0, 1, 2, ...}, is the fitted
Poisson model:

e’ ¥ y*
fitP= —— /. soly
x!
0.115679 2.15693%
x!

... and here is the fitted Poisson two-component-mix model:

e-d) ¢x e-zﬁ wx
fitPem = [0 ———— + (1-w) ——— | /. solé
x! x!

0.102482 1.2561% . 0.0446227 2.6634%
x ! x !

Table 8 compares the fit obtained by each model to the data. Evidently, the Poisson two-
component-mix model gives a closer fit to the data than the Poisson model in every
category. This improvement has been achieved as a result of introducing two additional
parameters, but it has come at the cost of requiring a more complicated estimation
procedure.

Count Mixed Poisson
162 161.227 126.784
267 271343  273.466
271 262.073  294.924
185 191.102  212.044
111 114.193 114.341

61 57.549 49.325
27 24.860 17.732
8 9.336 5.464
3 3.089 1.473
1 0911 0.353

O 0 39 N Lt A W N = O

Table 8: Fitted Poisson and Poisson two-component-mix models



412 CHAPTER 12 §12.7

I 12.7 The Newton—Raphson Algorithm

In this section, we employ the Newton—-Raphson (NR) algorithm to estimate the
parameters of an Ordered Probit model.

Data, Statistical Model and Log-likelihood

Random variables that cannot be observed are termed latent. A common source of such
variables is individual sentiment because, in the absence of a rating scale common to all
individuals, sentiment cannot be measured. Even without an absolute measurement of
sentiment, it is often possible to obtain partial information by using categorisation; a
sampling device that can achieve this is the ubiquitous ‘opinion survey’. Responses to
such surveys are typically ordered —e.g. choose one of ‘disliked Brand X’, ‘indifferent to
Brand X, or ‘liked Brand X’ — which reflects the ordinal nature of sentiment. Such latent,
ordered random variables are typically modelled using cumulative response probabilities.
Well-known models of this type include the proportional-odds model and the
proportional-hazards model (e.g. see McCullagh and Nelder (1989)), and the Ordered
Probit model due to McKelvey and Zavoina (1975) (see also Maddala (1983) and Becker
and Kennedy (1992)). In this section, we develop a simple form of the ordered probit
model (with cross-classification), estimating parameters using the Newton—Raphson (NR)
algorithm.

During consultations with a general medical practitioner, patients were asked a large
number of lifestyle questions. One of these was (the somewhat morbid), “Have you
recently found that the idea of taking your own life kept coming into your mind?”.
Goldberg (1972) reports count data for 295 individuals answering this question in Table 9.

Definitely not Do not think so Has crossed my mind Definitely has
Illness class G=0D (Gj=2) (G=3) (G=4
Normal (i=1) 90 5 3 1
Mild (i =2) 43 18 21 15
Severe (i =3) 34 8 21 36

Table 9: Psychiatric data— cross-classified by illness

The data is assumed to represent a categorisation of the ‘propensity to suicidal thought’, a
latent, ordered random variable. Responses are indexed by j, running across the columns
of the table. In addition, all individuals had been cross-classified into one of three
psychiatric classes: normal (i = 1), mild psychiatric illness (i = 2), and severe psychiatric
illness (i = 3). For example, of the 167 individuals responding “Definitely not”, 90 were
classified as normal, 43 as having mild psychiatric illness and 34 as suffering severe
psychiatric illness. Enter the data:

freq = {{90, 5, 3, 1}, {43, 18, 21, 15}, {34, 8, 21, 36}};

Due to the cross-classification, the issue of interest is whether the propensity to
suicidal thought can be ranked according to illness. Upon inspection, the data seems to
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suggest that the propensity to suicidal thought increases with mental illness. In order to
quantify this view, we define three latent, ordered random variables,

Y; = Propensity to suicidal thought of an individual classified with illness i

and we specify the following linear model for each,
Yi=8+U;, iefl, 2,3} (12.17)

where U; is an unknown disturbance term with zero mean. The (cross-classified) Ordered
Probit model is characterised by assuming a trivariate Normal distribution (see §6.4 B)
with independent components for the disturbances, namely,

Ui
U, ]~ N(O, I5) (12.18)
Us

which is scale invariant because observations are categorical. The class-specific parameter
B; enables us to quantify the differences between the psychiatric classes. In parametric
terms, if propensity to suicidal thought can be ranked increasingly in respect of psychiatric
illness, then we would expect 8; < B, < B3 —a testable hypothesis.17

Of course, it is not Y; that is observed in Table 9; rather, observations have been
recorded on another trio of random variables which we define as

Y; = the response to the survey question of an individual classified with illness i.

To establish the link between response Y; and propensity Y/, we assume Y; is a
categorisation of Y}, and that

P(Y; = j) = Plaj, <Y; <a;) (12.19)

for all combinations of indexes i and j. The parameters «y, ..., @4 are cut-off parameters
which, because of the ordered nature of Y}, satisfy the inequalities oy < @ < -+ < ay4.
Given the Normality assumption (12.18), we immediately require ap = —% and a4 = % to
ensure that probabilities sum to unity. Substituting (12.17) into (12.19), yields

PY;=)) = Plaj.1 —Bi <U;<a; - i)

(12.20)
O(a; - B;) — Oa;- — B)

where ® denotes the cdf of a N(0, 1) random variable (which is the marginal cdf of U;):18
1 X
Clear[&]; §[x_]=—2- (1+Erf[——]];

Then, the observed log-likelihood is given by:
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obslogLé =

3
Log[[ ] (8las - B:1) ™™ (8[as - Bi] - & [y - By ]) 7oL

i=1

(8las - Bs] - 8[az - B:]) 3T (1 -8[a; - p;]) eIl ;

As it stands, the parameters of this model cannot be estimated uniquely. To see this,
notice that in the absence of any restriction, it is trivially true that for any non-zero
constant 7y, the categorical probability in the ordered probit model satisfies

®(a; - B) = Vajo = i) = (@ +y) = (B + )= V(@1 +) = (B +))

for all possible i and j. Thus, the probability determined from values assigned to the
parameters (a1, a», as, B1, B2, 53) cannot be distinguished from the probability resulting
from values assigned as per (a; +7vy,ax+7y,a3+7y,B1+vy, B+7v, B3 +vy) for any
arbitrary y # 0. This phenomenon is known as a parameter identification problem. To
overcome it, we must break the equivalence in probabilities for at least one combination of
i and j. This can be achieved by fixing one of the parameters, thus effectively removing it
from the parameter set. Any parameter will do, and any value can be chosen. In practical
terms, it is better to remove one of the cut-off parameters (@1, a,, @3), for this reduces by
one the number of inequalities to which these parameters must adhere. Conventionally, the
identifying restriction is taken to be:

a; =0;
The parameter 8 = (a3, a3, B1, B2, B3) is defined over the space
®={(a2’03): (a'2s 03)6R3’0<02 <03} X {(ﬁlvﬁ2’ ﬁ3): (ﬁls ﬁ2’ ﬁ?)E[Rg}

and therefore @ is a proper subset of R>. For unconstrained optimisation, a transformation
to new parameters A = g() € R is required. Clearly, the transformation need only act on
the cut-off parameters, and one that satisfies our requirements is:

as

pem = {0 = ———

, 03 =@, By =Dbl, B =b2, B3 =b3};

where A = (a2, a3, bl, b2, b3) € R>. Notice that a; will be positive for all a3, and that it
will always be larger than a, for all a2, so the constraints 0 < a; < a3 will always be
satisfied.1® From inspection of prm, it is apparent that we have not yet determined g(6),
for @, depends on @3. However, by inputting:

OToA = Solve[prm, {az, a3, B1, B2, B3}] // Flatten

a3

To—r Biobl, B2 >b2, B3 503, o > e¥)

{0(2%1

we now have g(6) in the form of a replacement rule. We now enter into Mathematica the
observed log-likelihood function in terms of A (ocbslogLA):
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obslogLA = obslogL6 /. OToA;

Similar to §12.6, we can use FindMaximum to estimate the parameters using the
NR algorithm:

FindMaximum [obslogLA, {a2, 0}, {a3, 0},
{bl, 0}, {b2, 0}, {b3, 0}, Method -» Newton]

{-292.329, {a2 - 0.532781, a3 - -0.0507304,
bl > -1.34434, b2 -0.0563239, b3 - 0.518914}}

But, as has previously been stated, the main drawback to using FindMaximum is that it
does not supply the final Hessian matrix —we cannot construct an estimate of the
asymptotic variance-covariance matrix of the ML estimator of A from FindMaximum’s
output.

NR Algorithm

We shall estimate A and the asymptotic variance-covariance matrix using the NR
algorithm. From (12.8), (12.11) and (12.13), the NR algorithm is based on the updating
formulae:

Aty = Ay + pao day

= Wy ~Pg(/A\(k))
-1

W = —Hg

U
S
=
=z

|

where k is the iteration index, p, is the gradient of the penalty function, W is the inverse
of the Hessian of the penalty function and H is the Hessian of the observed log-likelihood
function. We obtain the penalty function, the gradient and the Hessian as follows:

p = -obslogLA;
pf[{a2_, a3_, bl_, b2_, b3_}] =p:

g = Grad[p, {a2, a3, bl, b2, b3}];
gradpf[{a2_, a3_, bl_, b2_, b3_}] =g;

H = Hessian[obslogLA, {a2, a3, bl, b2, b3}];
hessf[{a2_, a3_, bl_, b2_, b3_}] =H;

These are very complicated expressions, so unless your computer has loads of memory
capacity, and you have loads of spare time, we strongly advise using the humble semi-
colon ‘;’ (as we have done) to suppress output to the screen! Here, gradpf and hessf
are functions with a List of Symbol arguments matching exactly the elements of A. The
reason for constructing these two functions is to avoid coding the NR algorithm with
numerous replacement rules, since such rules can be computationally inefficient and more
cumbersome to code. The vast bulk of computation time is spent on the Hessian matrix.
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This is why NR algorithms are costly, for they evaluate the Hessian matrix at every
iteration. It is possible to improve computational efficiency by compiling the Hessian.20

Another way to proceed is to input the mathematical formula for the Hessian matrix
directly into Mathematica; Maddala (1983), for instance, gives such formulae. This
method has its cost too, not least of which is that it runs counter to the approach taken
throughout this volume, which is to ask Mathematica to do the work. Yet another
approach is to numerically evaluate/estimate the first- and second-order derivatives, for
clearly there will exist statistical models with parameter numbers of such magnitude that
there will be insufficient memory available for Mathematica to derive the symbolic
Hessian—after all, our example only has five parameters, and yet computing the
symbolic Hessian already requires around 7 MB (on our reference machine) of free
memory. In this regard, the standard add-on package NumericalMath NLimit" may
assist, for its ND command performs numerical approximations of derivatives.

In §12.3, we noted that the NR algorithm is useful as a ‘finishing-off” algorithm
which fine tunes our estimates. This is because NR uses the actual Hessian matrix,
whereas quasi-Newton algorithms (like BFGS) only use estimates of the Hessian matrix.
But, for this example, we will apply the NR algorithm from scratch. Fortunately for us, the
log-likelihood of the Ordered Probit model can be shown to be globally concave in its
parameters; see Pratt (1981). Thus, the Hessian matrix is negative definite for all 8, and
therefore negative definite for all A, as the two parameters are related one-to-one.

In principle, given concavity, the NR algorithm will reach the global maximum from
wherever we choose to start in parameter space. Numerically, however, it is nearly always
a different story! Sensible starting points nearly always need to be found when optimising,
and the Ordered Probit model is no exception. For instance, if a starting value for a3 equal
to 3.0 is chosen, then one computation that we are performing is the integral under a
standard Normal distribution curve up to exp(3) ~20. In this case, it would not be
surprising to see the algorithm crash, as we will run out of numerical precision; see
Sofroniou (1996) for a discussion of numerical precision in Mathematica. Sensible
starting values usually require some thought and are typically problem-specific —even
when we are fortunate enough to have an apparently ideal globally concave log-likelihood,
as we do here.

Our implementation of the NR algorithm follows. Like our BFGS algorithm, we have
left it very much without any bells and whistles. Upon convergence to tolerance, the
output is recorded in results which has four components: results[1] is the number
of iterations taken to achieve convergence to tolerance; results[2] is the value of the
maximised observed log-likelihood; results[3] is the ML point estimates; and
results[4] is the negative of the inverse Hessian evaluated at the ML point estimates.
The origin would seem to be a sensible starting value at which to initiate the algorithm.

Armijo[f_, 6_, grad_, dir_] :=
Module[{a =0.5, 3=0.65, u=1., £0, gd},
f0=f[6]; gd=grad.dir;
While[ f[6+udir] -£f0-puagd>0, u=Bul; u]
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A0 = {0., 0., 0., 0., 0.};

g0 = gradpf [A0] ;

Do [ HO = hessf[A0];
-Inverse[HO];

WO =

d=-wW0.g0;

Al = A0 + Armijo[p£f, A0, g0, 4] 4;
gl = gradpf[Al];
If [Max[Abs[gl]] < 1079, Break[results =
{iter, -pf[A1l], A1, -Inverse[hessf[Al]]}]]:
A0 = A1;

g0 =

gl,

{iter, 1, 20}];

From its starting point, the NR algorithm takes just over 10 seconds to converge to

. . . . . e
tolerance on our reference machine. In total, it takes five iterations:

results[1]

5

The returned estimate of A is:

results[3]

{0.532781, -0.0507304, -1.34434, 0.0563239, 0.518914}

at which the value of the observed log-likelihood is:

results[2]

-292.329

Table 10 gives estimation results for the parameters of our original Ordered Probit
model (found using the Invariance Property). Because ﬁl < Bz < [?3, our quantitative
results lend support to the qualitative assessment made at the very beginning of this
example —that propensity to suicidal thought increases with severity of psychiatric

illness.2!

@3
%]
B
B>
Bs

Estimate
0.35157
0.95054

—1.34434
0.05632
0.51891

SE
0.059407
0.094983
0.174219
0.118849
0.122836

TStat
5.91804
10.00740
—7.71641
0.47391
4.22446

Table 10: ML estimation results for the Ordered Probit model
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I 12.8 Exercises

1. Generate 10 pseudo-random drawings from X ~ N(0, 1) as follows:
data = Table[v/2 InverseErf [0, -1+ 2Random[]], {10} ]

Use ML estimation to fit the N(u, o%) distribution to the artificial data using each of
the following:

FindMaximum |[obslogLe, {u, 0}, {o, 1}]

FindMaximum [obslogLe, {u, {-1, 1}}, {o, {0.5, 2}}]
FindMaximum [obslogLe, {u, 0, -3, 3}, {o, 1, 0, 4}]
FindMaximum [obslogLe, {u, 0}, {o, 1}, Method - Newton]

FindMaximum [obslogL®e, {u, 0}, {o, 1}, Method - QuasiNewton]

where obslogLé is the observed log-likelihood for 6 = (u, o). Contrast your
answers against the estimates computed from the exact ML estimator

o n ~\2
X; and 0—:\/?1?2:'_1()("_”) .

-

~ 1
H=

i=1

2. Let X ~ Waring(a, b) with pmf

N I'x+a) I'(b)
PX=x)=b-0 Fo oo+ 1)
where the parameters are such that b > a > 0. Use FindMaximum to obtain ML

estimates of a and b for the Word Count data, which is loaded using:

xef{0,1,2,...}

ReadList["WordCount.dat"]

Hint: re-parameterise 6 = (a, b) to A = (¢, d) € R?, where a = ¢° and b = e°(1 + e?).
Estimate the variance-covariance matrix of the asymptotic distribution of the ML
estimator using the Hessian estimator.

3. Let X ~ NegativeBinomial(r, p).

(i) Show that u < 0%, where u = E[X] and 0 = Var(X).

(i) Let (X;, X5 ..., X,,) denote a random sample of size n on X. Now it is generally
accepted that X, the sample mean, is the best estimator of u. Using the log-
likelihood concentrated with respect to the estimator X for u, obtain the ML
estimate of r for the data sets NB1 (enter as ReadList ["NB1l.dat"]) and
NB2 (enter as ReadList ["NB2.dat"]).

(iii) Comment on the fit of each model. Can you find any reason why the ML
estimate for the NB2 data seems so erratic?

4. Answer the following using the Nerve data given in §12.2. Let X ~ Gamma(a, 3)
with pdf f(x; 6), where 6 = (, B). Example 2 derived the ML estimate as 6 = (d/, ﬁ) =
(1.17382, 0.186206).

(i) Derive Fisher’s estimate of the asymptotic variance-covariance matrix of the
ML estimator of 8 (hint: see Example 3).

(i1) Given 0, use the Invariance Property (§11.4E) to derive ML estimates of:
(@) A= (u,v),where u = E[X] and v = Var(X), and

(b) the asymptotic variance-covariance matrix of the ML estimator of A.
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(iii) Re-parameterise the pdf of X to f(x; A).
(@) Use FindMaximum’s BFGS algorithm (Method - QuasiNewton) to
obtain the ML estimate of A.
(b) Estimate the asymptotic variance-covariance matrix of the ML estimator of
A using the Fisher, Hessian and Outer-product estimators.
(c) Compare your results for parts (a) and (b) to those obtained in (ii).
(iv) Using the Invariance Property (§11.4 E), report ML estimates of:
(@) 0= (u, o), where u = E[X] and 0 = a, and
(b) the asymptotic variance-covariance matrix of the ML estimator of o.
(v) Re-parameterise the pdf of X to f(x; 0).
(a) Use FindMaximum’s BFGS algorithm to obtain the ML estimate of 9.

(b) Estimate the asymptotic variance-covariance matrix of the ML estimator of
¢ using the Fisher, Hessian and Outer-product estimators.

(¢) Compare your results for parts (a) and (b) to those obtained in (iv).

5. The Gamma regression model specifies the conditional distribution of Y | X = x, with
pdf

folX=x0)= F_(IE (#)_a exp(—%)y""1

where p = exp(a + S x) is the regression function, o is a scaling factor and parameter
O=(a,B,0)e{aeR, BeR,cR,}. Use ML estimation to fit the Gamma
regression model to Greene’s data (see Example 5). By performing a suitable test on
o, determine whether the fitted model represents a significant improvement over the
Exponential regression model for Greene’s data.

6. Derive ML estimates of the ARCH model of §12.3 based on the BFGS algorithm of
§12.6. Obtain an estimate of the variance-covariance matrix of the asymptotic
distribution of the ML estimator. Report your ML estimates, associated asymptotic
standard errors and f-statistics.



