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Chapter 4

Distributions of
Functions of Random Variables

I 4.1 Introduction

This chapter is concerned with the following problem, which we state here in its simplest
form:

Let X be a random variable with density f(x).
What is the distribution of ¥ = u(X), where u(X) denotes some function of X?

This problem is of interest for several reasons. First, it is crucial to an understanding of
statistical distribution theory: for instance, this chapter derives (from first principles)
distributions such as the Lognormal, Pareto, Extreme Value, Rayleigh, Chi-squared,
Student’s ¢, Fisher’s F, noncentral Chi-squared, noncentral F, Triangular and Laplace,
amongst many others. Second, it is important in sampling theory: the chapter discusses
ways to find the exact sampling distribution of statistics such as the sample sum, the
sample mean, and the sample sum of squares. Third, it is of practical importance: for
instance, a gold mine may have a profit function u(x) that depends on the gold price X (a
random variable). The firm is interested to know the distribution of its profits, given the
distribution of X.

In statistics, there are two standard methods for solving these problems:

e The Transformation Method: this only applies to one-to-one transformations.

o The MGF Method: this is less restrictive, but can be more difficult to solve. It is based
on the Uniqueness Theorem relating moment generating functions to densities.

§4.2 discusses the Transformation Method, while §4.3 covers the MGF Method.
These two methodologies are then applied to some important examples in §4.4 (products
and ratios of random variables) and §4.5 (sums and differences of random variables).
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I 4.2 The Transformation Method

This section discusses the Transformation Method: §4.2 A discusses transformations of a
single random variable, §4.2 B extends the analysis to the multivariate case, while §4.2 C
considers transformations that are not strictly one-to-one, as well as manual methods.

4.2 A Univariate Cases

A one-to-one transformation implies that each value x is related to one (and only one)
value y = u(x), and that each value y is related to one (and only one) value x = u~'(y). Any
univariate monotonic increasing or decreasing function yields a one-to-one
transformation. Figure 1, for instance, shows two transformations.

Fig.1: (i)y=x%, forxeR, (iiyy=x%, forxe (-1, 2)

Case (i): Even though y = x> has two solutions, namely:

Solve[y = %%, x]
{xo-Vv} {x-+v})

only the latter solution is valid for the given domain (x € R, ). Therefore, over the given
domain, the function is monotonically increasing, and thus case (i) is a one-to-one
transformation.

Case (ii): Here, for some values of y, there exists more than one corresponding value of x;
there are now two valid solutions, neither of which can be excluded. Thus, case (ii) is not
a one-to-one transformation. Fortunately, a theorem exists to deal with such cases: see
§4.2C.

[ |
Theorem 1: Let X be a continuous random variable with pdf f(x), and let ¥ = u(X) define
a one-to-one transformation between the values of X and Y. Then the pdf of Y, say g(), is

g = flu' ) | /]| .1

-1
where x=u"!(y) is the inverse function of y=u(x), and J = dud% denotes the

Jacobian of the transformation; u~! is assumed to be differentiable.
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Proof: We will only sketch the proof.! To aid intuition, suppose Y = u(X) defines a one-to-
one increasing transformation between the values of X and Y. Then P(Y <y) = P(X < x),
or equivalently in terms of their respective cdf’s, G(y) = F(x). Then, by the chain rule of
differentiation:

gy = d%y ) - d;gcx) % = f(X)Z% where x = u™! (y).

Remark: If X is a discrete random variable, then (4.1) becomes:

gy = flu"' )

The mathStatica function, Transform[egn, f] finds the density of ¥ = u(X), where X
has density f(x), for both continuous and discrete random variables, while
TransformExtremum[egn, f] calculates the domain of Y, if it can do so. As per
Theorem 1, Transform and TransformExtremum should only be used on
transformations that are one-to-one. The Transform function is best illustrated by
example ...

@ Example 1: Derivation of the Cauchy Distribution

Let X have Uniform density f(x) = ;lr-, defined on (— %, %)

f_l. 3 inl£] o 7 T
= ;, omain[f] = {x,—?, ?}:

Then, the density of Y = tan(X) is derived as follows:

Transform[y == Tan[x], £f]
1
T+ JTy2

with domain of support:

TransformExtremum [y == Tan[x], £f]

{YI —°, °°}

This is the pdf of a Cauchy distributed random variable. Note the double equal sign in the
transformation equation: y ==Tan[x]. If, by mistake, we enter y = Tan[x] with a
single equal sign (or if y was previously given some value), we would need to Clear [y]
before trying again. |
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® Example 2: Standardising a N(1t, %) Random Variable

Let X ~ N(u, o) with density f(x):

(x-p)?
@ 2.2
f=——; domain[f] = {x, -, «} && {u € Reals, o> 0};

Then, the density of Z = X-u , denoted g(z) is:

a

g = Transform[z == , f]
o
X-U
domain[g] = TransformExtremu.m[z == ’ f]
o

e T

V2T

{Z, —0, °°}

That is, Zis a N(0, 1) random variable. [ |

@ Example 3: Derivation of the Lognormal Distribution

Let X ~ N(u, 0?) with density f(x), as entered above in Example 2. Then, the density of
Y = %, denoted g(y), is:

g = Transform[y == e*, £]
domain[g] = TransformExtremum [y == €*, £]

_ (u-Tog[y])?

e 202
27Ty O
{y, 0, oo} && {1t € Reals, o> 0}

This is a Lognormal distribution, so named because log(Y) has a Normal distribution.
Figure 2 plots the Lognormal pdf, when ;=0 and o = 1.

PlotDensity[g /. {u>0, o> 1}];
8

0.6
0.5
0.4
0.3
0.2

0.1

2 4 6 8 10
Fig. 2: Lognormal pdf
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@ Example 4: Derivation of Uniform, Pareto, Extreme Value and Rayleigh Distributions
Let X have a standard Exponential distribution with density f(x):

f=e *; domain[£f] = {x, 0, «};

We shall consider the following simple transformations:

HY=e* ()Y=eX (i)Y =-logX) (v)Y=vVX

(i) When Y = eX, we obtain the standard Uniform distribution:

g = Transform[y = e, £f]
domain[g] = TransformExtremum [y == e *, £f]

1

{y, 0, 1}

(ii) When Y = e, we obtain a Pareto distribution:

g Transform[y == e*, £]

domain[g] = TransformExtremum [y == €*, £]
1
?2‘
{y, 1, =}
More generally, if X ~Exp0nential(%), then Y =beX (b>0) yields the Pareto

density with pdf a b* y=“@*D defined for y > b.2 This is often used in economics to

model the distribution of income, and is named after the economist Vilfredo Pareto
(1848-1923).

(iii) When Y = —log(X), we obtain the standard Extreme Value distribution:

g Transform[y == -Log[x], £f]
domain[g] = TransformExtremum [y == -Log[x], £]

—e Y _
e ® Y

{YI —° °°}
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(iv) When Y = \/ Y, we obtain a Rayleigh distribution:

g

Transform [y == ‘\/;:_, f]

domain[g] TransformExtremum [y == ‘\/;:_, f]

2 v
{y, 0, oo}

as given in the Continuous palette (simply replace o with vV 1/2 to get the same
result). More generally, if X ~ Exponential(A), then Y = VX ~ Rayleigh(o) with
o =+A/2. This distribution is often used in engineering to model the life of

electronic components. ]

@ Example 5: Transformations of the Uniform Distribution

Let X ~ Uniform(a, ) with density f(x), where 0 < @ < 8 < o0:

f = ; domain[f] = {x%, a, B} && {0 <a< f};
We seek the distributions of: (i) Y =1 + X and (i) Y = (1 + X)_l.
Solution: Let g(y) denote the pdf of Y. Then the solution to (i) is:

g
domain[g]

Transform[y == 1 + X2, £]
TransformExtremum [y = 1 + x2, f£]

1
V-1l+y (-2a+2f3)

(v, 1+0%, 1+B%}&& {0<a<fB)}

while the solution to the second part is:

g Transform[y == (1 + x) -1, £f]
domain[g] = TransformExtremum [y == (1 + x) -1, £f]

S S
fy2ot+y26
1 1
lvi 755 Togtss(0<a<p

Generally, transformations involving parameters pose no problem, provided we remember

to attach the appropriate assumptions to the original domain[f] statement at the very

start. |
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4.2 B Multivariate Cases

Thus far, we have considered the distribution of a transformation of a single random
variable. This section extends the analysis to more than one random variable. The
concepts discussed in the univariate case carry over to the multivariate case with the
appropriate modifications.

Theorem 2: Let X; and X, be continuous random variables with joint pdf f(x;, x). Let
Y =u;(X;, X,) and Y, = u,(X;, X;) define a one-to-one transformation between the
values of (X;, X») and (Y7, Y2). Then the joint pdf of Y; and Y is

g0, y2) = flu'Or.y2), w2 Giy)) |J| (4.2)

where u;! (v, y,) is the inverse function of ¥; = u;(X;, X,), and

ox;  0xp.
oy Oy
J =det
| ox ox
oy Oy
is the Jacobian of the transformation, with %;—’— denoting the partial derivative of
J

X, = ui‘l(yl, ¥2) with respect to y;, and det(-) denotes the determinant of the matrix.
Transformations in higher dimensional systems follow in similar fashion.

Proof: The proof is analogous to Theorem 1; see Tjur (1980, §3.1) for more detail.

Remark: If the X; are discrete random variables, (4.2) becomes:

801, y2) = flur' Oy y2), w3 01, ¥2))

The mathStatica function, Transform, may also be used in multivariate settings. Of
course, by Theorem 2, it should only be used to solve transformations that are one-to-one.

The transition from univariate to multivariate transformations raises two new issues:

(i) How many random variables?

The Transformation Method requires that there are as many ‘new’ variables Y; as
there are ‘old’ variables X;. Suppose, for instance, that X;, X, and X3 have joint pdf
f(x1, x2, x3), and that we seek the pdf of Y| =u;(X;, X3, X3). This problem involves
three steps. First, we must create two additional random variables, Y, = u, (X, X5, X3)
and Y; = u3(X;, X3, X3), and we must do so in such a way that there is one-to-one
transformation from the values of (X, X5, X3) to (Yy, Y2, Y3). This could, for example, be
done by setting Y, = X,, and Y3 = X3. Second, we can then find the joint pdf of
(Y1, Y,, Y3). Third, we can then derive the desired marginal pdf of Y; from the joint pdf of
(Y1, Ya, Y3) by integrating out Y, and Y3. Example 7 illustrates this procedure.
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(i) Non-rectangular domains

Let (X;, X») have joint pdf f(x;, x,). Let Y1 = u;(X;, X») and ¥, = u, (X, X,) define
a one-to-one transformation from the values of (X;, X,) to the values of (Y7, Y>), and let
g(y1, y2) denote the joint pdf of (Yy, Y,). Finally, let A denote the space where
f(x1, x7) >0, and let B denote the space where g(y;, y,) > 0; A and B are therefore the
domains of support. Then, the transformation is said to map space A (in the x;-x, plane)
onto space B (in the y;-y, plane). If the domain of a joint pdf does not depend on any of
its constituent random variables, then we say the domain defines an independent product
space. For instance, the domain A = {(x;, x3) : % <x; <3, 1 <x, <4} is an independent
product space, because the domain of X; does not depend on the domain of X, and vice
versa. If plotted in x;-x, space, this domain would appear rectangular, as the left panel in
Fig. 3 illustrates.

X2 y2

X
12 3 : 1 I

Fig. 3: Rectangular (left) and non-rectangular (right) domains

In this vein, we refer to domains as being either rectangular or non-rectangular. Even
though space A is rectangular, it is important to realise that a multivariate transformation
will often create dependence in space B. To see this, consider the following example:

@ Example 6: A Non-Rectangular Domain

Let X; and X, be defined on the unit interval with joint pdf f(x;, x,) = 1:
£f=1; domain[f] = {{x., 0, 1}, {x%2, 0, 1}}:
LetY; =X, +X; and Y, = X; — X5. Then, we have:
eqn = {y1 = X1 +Xz, Y2 = X1 -X2};

Note the bracketing on the transformation equation—it takes the same form as
Mathematica’s Solve function. Then the joint pdf of Y; and Y3, denoted g(y, ¥»), is:

g = Transform[eqn, f]

1

2
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The mathStatica function DomainPlot [egn, f] illustrates set B, denoting the space in
the y, -y, plane where g(y;, y2) = %

DomainPlot [egn, f£];

Fig. 4: Space in the y,-y, plane where g(y,, y,) = %

The domain here is B = {(yl, ¥2): 0<y +y: <2, =2<y, =y <O}. This is clearly a
non-rectangular domain, indicating that ¥; and Y, are dependent.

Notes:

(i) In the multivariate case, TransformExtremum does not derive the domain itself;
instead it calculates the extremities of the domain:

TransformExtremum [eqgn, £]
{{Yll Ol 2}1 {Y2I _ll l}}
This is sometimes helpful to verify ones working. However, as this example shows,

extremities and domains are not always the same, and care must be taken not to
confuse them.

(ii) For more information on DomainPlot, see the mathStatica Help file.

(iii) It is worth noting that even though Y, and Y, are dependent, they are uncorrelated:

Corr[{x; +Xy, X; -X3}, £]

0

It follows that zero correlation does not imply independence. |
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@ Example 7: Product of Uniform Random Variables

Let X; ~ Uniform(0, 1) be independent of X, ~ Uniform(0, 1), and let ¥ = X; X,. Find
P(Y < 7).

Solution: Due to independence, the joint pdf of X; and X,, say f(x;, x,), is just the pdf of
X, multiplied by the pdf of X;:

£f=1; domain[f] = {{x., 0, 1}, {x%2, 0, 1}}:

Take Y = X; X,, and let Z = X,, so that the number of ‘new’ variables is equal to the
number of ‘old’ ones. Then, the transformation equation is:

Let g(y, z) denote the joint pdf of (Y, Z):
g = Transform[egn, £f]
1
z
Since X; and X, are U(0, 1), and Y = X; X, and Z = X;, it follows that 0 < y < z< 1. To
see this visually, evaluate DomainPlot [egn, f£]. Weenter 0 <y <z <1 as follows:
domain[g] = {{y, 0, z}, {z, ¥, 1}};
Then the marginal pdf of Y = X; X, is:

h = Marginal [y, g]

-Log [v]
with domain of support:
domain[h] = {y, 0, 1};

Finally, we require P(Y < %). This is given by:

Prob[%—, h]

which is approximately 0.5966. It can be helpful, sometimes, to check that one’s symbolic
workings make sense by using an alternative methodology. For instance, we can use
simulation to estimate P(X; X, < %). Here, then, are 10000 drawings of ¥ = X; X»:

data = Table[ Random[] Random[], {10000}];
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We now count how many copies of Y are smaller than (or equal to) %, and divide by
10000 to get our estimate of P(Y < % :

Count [data, y_/; ¥ < T]
10000.

0.5952

which is close to the exact result derived above. [ |

4.2 C Transformations That Are Not One-to-One;
Manual Methods

In §4.2 A, we considered the transformation ¥ = X? defined on x € (=1, 2). This is not a
one-to-one transformation, because for some values of Y there are two corresponding
values of X. This section discusses how to undertake such transformations.

Theorem 3: Let X be a continuous random variable with pdf f(x), and let ¥ = u(X) define
a transformation between the values of X and Y that is not one-to-one. Thus, if A denotes
the space where f(x) >0, and B denotes the space where g(y) > 0, then there exist points
in B that correspond to more than one point in A. However, if set A can be partitioned
into k sets, Ay, ..., A, such that u defines a one-to-one transformation of each ‘A; onto
B; (the image of A; under u), then the pdf of Y is

k
g = > 6 fur ) | i | fori=1,...k (4.3)

i=1

where ;(y) = 1 if y; € B; and 0 otherwise, x = u; ' (y) is the inverse function of ¥ = u(X)
du;' ()
dy

in partition i, and J; = denotes the Jacobian of the transformation in partition i.3

All this really means is that, for each region i, we simply work as we did before with
Theorem 1; we then add up all the parts i = 1, ..., k.

@ Example 8: A Transformation That Is Not One-to-One

Let X have pdf f(x) = ﬁ defined on x € (—1, 2), and let ¥ = X?. We seek the pdf of
Y. We have:

f=—; domain[£f] = {x, -1, 2}; eqn = {y = x°};
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Solution: The transformation from X to Y is not one-to-one over the given domain. We
can, however, partition the domain into two sets of points that are both one-to-one. We do

this as follows:

{x, -1, 0};
{x, 0, 2};

£, = £; domain[f;]
f, = £; domain[f,]

Let g;(y) denote the density of Y corresponding to when x <0, and similarly, let g,(y)

denote the density of Y corresponding to x > 0:

{g1 = Transform[eqgn, £f;], TransformExtremum [eqgn,
{g, = Transform[eqgn, £f,], TransformExtremum [eqgn,
el VY
» {y, 0, 1}
{ (-2+2e*) Vy )
(el+\/§
» {y, 0, 4}
{ (-2+2€*) "y }

By (4.3), it follows that

g1+ & O<y=l
2 l<y<4

which we enter, using mathStatica, as:
g =If[y<1, gi1+9d2, 92]; domain[g] = {y, 0, 4};
Figure 5 plots the pdf.

PlotDensity[g, PlotRange -» {0, .5}]:

0.5
04 |
03|
02|

0.1 ¢

1 2 3 4

Fig. 5: The pdf of Y = X?, with discontinuity at y = 1

£.1}
£:1}
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Despite the discontinuity of the pdf at y = 1, mathStatica functions such as Prob and
Expect will still work perfectly well. For instance, here is the cdf P(Y < y):

cdf = Probly, g]

- L 2 eSinh[\/y} 14 ety
<
[y_ ' -1l+ed "o -l+ed }
This can be easily illustrated with Plot [cdf, {y,0,4}]. ]

@ Example 9: The Square of a Normal Random Variable: The Chi-squared Distribution

Let X ~ N(0, 1) with density f(x). We seek the distribution of ¥ = X2. Thus, we have:

2

e =T
f = ; domain[f] = {x, -, ©}; eqn = {y=x°};

Var

Solution: The transformation equation here is not one-to-one over the given domain. By
Theorem 3, we can, however, partition the domain into two disjoint sets of points that are
both one-to-one:

£, = £; domain[£f,]
£, = £; domain[£f;]

{xl -0, 0};
{xl 0, °°};

Let g;(y) denote the density of Y corresponding to when x <0, and similarly, let g,(y)
denote the density of Y corresponding to when x > 0:

{g1 = Transform[eqgn, £f;], TransformExtremum|[eqgn, £;]}

{g, = Transform[eqgn, £f,], TransformExtremum|[eqgn, £,]}
e—y/2

— — =1 {YI O, °°}

{ 227y }
e—y/2

=1 {YI O, °°}

{ 227y J

By Theorem 3, it follows that

g +& O<y<w®
0 otherwise

gy = {

where g + g, is:

g1 + 92

(e—y/2

Va2 Ay

This is the pdf of a Chi-squared random variable with 1 degree of freedom. |
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Manual Methods
In all the examples above, we have always posed the transformation problem as:

Q. Let X be a random variable with pdf f(x). What is the pdf of ¥ = X?
A. Transform[y == e*, f]

But what if the same problem is posed as follows?

Q. Let X be a random variable with pdf f(x). What is the pdf of Y, given X = log(Y)?
A. Transform[x == Log[y], £1 will fail, as this syntax is not supported.

We are now left with two possibilities:

(i) We could simply invert the transformation equation manually in Mathematica with
Solvel[x ==Log[y], £1, and then derive the solution automatically with
Transform(y == €*, f£]. Unfortunately, Mathematica may not always be able to
neatly invert the transformation equation into the desired form, and we are then stuck.

(i) Alternatively, we could adopt a manual approach by implementing either Theorem 1
(§4.2 A) or Theorem 2 (§4.2 B) ourselves in Mathematica. In a univariate setting, the
basic approach would be to define:

g= (f/.x->Log[y]) * Jacob[x/.x->Log[y]., V]
where the mathStatica function Jacob calculates the Jacobian of the transformation

in absolute value. A multivariate example of a manual step-by-step transformation is
given in Chapter 6 (see Example 20, §6.4 A).

I 4.3 The MGF Method

The moment generating function (mgf) method is based on the Uniqueness Theorem
(§2.4 D) which states that there is a one-to-one correspondence between the mgf and the
pdf of a random variable (if the mgf exists). Thus, if two mgf’s are the same, then they
must share the same density. As before, let X have density f(x), and consider the
transformation to Y = u(X). We seek the pdf of Y, say g(y). Two steps are involved:

Step 1: Find the mgf of Y.

Step 2: Hence, find the pdf of Y. This is normally done by matching the functional form of
the mgf of Y with well-known moment generating functions. One usually does this armed
with a textbook that lists the mgf’s for well-known distributions, unless one has a fine
memory for such things. If we can find a match, then the pdf is identified by the
Uniqueness Theorem. Unfortunately, this matching process is often neither easy nor
obvious. Moreover, if the pdf of Y is not well-known, then matching may not be possible.
The mgf method is particularly well-suited to deriving the distribution of sample sums and
sample means. This is discussed in §4.5 B, which provides further examples.
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@ Example 10: The Square of a Normal Random Variable (again)

Let random variable X ~ N(0, 1) with pdf f(x):

x2?

e T
V2

We seek the distribution of ¥ = X?.

f =

; domain[£f] = {x, -, «};

Solution: The mgf of ¥ = X? is given by E[e’Xz ]:

mgf, = Expect [cx-zt x* f]

— This further assumes that: {t < %}

1

Vv1-2¢t

By referring to a listing of mgf’s, we see that this output is identical to the mgf of a Chi-
squared random variable with 1 degree of freedom, confirming what was found in
Example 9. Hence, if X ~ N(0, 1), then X? is Chi-squared with 1 degree of freedom.

Using Characteristic Functions

The Uniqueness Theorem applies to both the moment generating function and the
characteristic function (cf). As such, instead of deriving the mgf of Y, we could just as
well have derived the characteristic function. Indeed, using the cf has two advantages.
First, for many densities, the mgf does not exist, whereas the cf does. Second, once we
have the cf, we can (in theory) derive the pdf that is associated with it by means of the
Inversion Theorem (§2.4 D), rather than trying to match it with a known cf in a textbook
appendix. This is particularly important if the derived cf is not of a standard (or common)
form.

In this vein, we now obtain the pdf of Y directly by the Inversion Theorem. To start,
we need the cf. Since we already know the mgf (derived above), we can easily derive the
cf by simply replacing the argument ¢ with i ¢, as follows:

cf =mgf, /. t-> it
__
Vv1i-21it

and then apply the Inversion Theorem (as per §2.4 D) to yield the pdf:

pdf = InverseFourierTransform[cf, t, v,
FourierParameters - {1, 1}]

(L+Signfy]) (Cosh[¥] -Sinh[¥])
2

2
22 1 (y )1/4
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which simplifies further if we note that Y is always positive:

FullSimplify[pdf, v > 0]

(e—y/2

Va2 Ay

which is the pdf we obtained in Example 9. Although inverting the cf is much more
attractive than matching mgf’s with textbook appendices, the inversion process is
computationally difficult (even with Mathematica) and success is not that common in
practice. ]

@ Example 11: Product of Two Normals

Let X; and X, be independent N(0, 1) random variables. We wish to find the density of
the product Y = X; X, using the mgf/cf method.

Solution: The joint pdf f(x;, x,) is:

domain[£f] = {{x;, -o°o, =}, {¥z, -, «=}};

The cf of Y is given by E[e’'"| = E[e" X1 X2 |:

cf = Expect [elt*1 %2, f]
— This further assumes that: {t2 > -1}
1
V1 o+ t2

Inverting the cf yields the pdf of Y:

pdf = InverseFourierTransform|[cf, t, vy,
FourierParameters - {1, 1}]

BesselK[0, y Sign[y]]
T

where BesselK denotes the modified Bessel function of the second kind. Figure 6
contrasts the pdf of Y with that of the Normal pdf.
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Fig. 6: The pdf of the product of two Normals (—) compared to a Normal pdf (——-)

I 4.4 Products and Ratios of Random Variables

This section discusses random variables that are formed as products or ratios of other
random variables.

@ Example 12: Product of Two Normals (again)

Let X; and X, be two independent standard Normal random variables. In Example 11, we
found the pdf of the product X; X, using the MGF Method. We now do so using the
Transformation Method.

Solution: Let f(x1, x,) denote the joint pdf of X; and X,. Due to independence, f(xi, x;)
is just the pdf of X; multiplied by the pdf of X,:

f = ; domain[f] = {{x;, -, o}, {X3, -0, =}};

Let Y; = X; X, and Y, = X,. Then, the joint pdf of (Y1, Y>), say g(y1, ¥2), is:

Transform[{y: == X; X5, Y2 =X»}, £];
{{yll =00, °°}l {YZI =00, °°}};

g
domain[g]

In the interest of brevity, we have suppressed the output of g here by putting a semi-colon
at the end of each line of the input. Nevertheless, one should always inspect the solution
for g by removing the semi-colon, before proceeding further. Given g(y;, y»), the
marginal pdf of Y, is:

Marginal [yi, g]

BesselK [0, Abs[y:1]]
7

as per Example 11. ]
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@ Example 13: Ratio of Two Normals: The Cauchy Distribution

Let X; and X, be two independent standard Normal random variables. We wish to find the
pdf of the ratio X; / X>.

Solution: The joint pdf f(x;, x,) was entered in Example 12. Let g(y;, y,) denote the joint
pdfof Y1 =X, /X; and Y, = X,. Then:

:: r Y2 ==xz}: f];

g

Transform [ {y1 ==

domain[g] {{y1, =, 0}, {¥2s -, «}};

Again, one should inspect the solution to g by removing the semi-colons. The pdf of Y; is:

Marginal [yi, g]
1

T+ Ty

where Y| has domain of support (—o°, »). That is, the ratio of two independent N(0, 1)
random variables has a Cauchy distribution. ]

@ Example 14: Derivation of Student’s ¢ Distribution

Let X ~ N(0, 1) be independent of ¥ ~ Chi-squared(n). We seek the density of the (scaled)

. X
ratio T = .
VY/n

Solution: Due to independence, the joint pdf of (X, Y), say f(x,y), is the pdf of X
multiplied by the pdf of Y:

Fh
1]

[ e'% ] ( y% 1 e'% ]
* = H
Vzr ) 22Ty

domain[£] {{x, -, ©}, {y¥, 0, ©}} && {n>0};

X .. . . .
LetT = and Z = Y. Then, the joint pdf of (T, Z), say g(¢, z), is obtained with:
\/_Y/_n J p ( ) y g( Z)
X
g = Transform[{ = ;y Z = y}, f];
yv/n

domain[g] {{t, -, =}, {2, 0, «}} && {n > 0};

Then, the pdf of T is:

Marginal[t, g]

n™2 (n+t2) % (-1-n)

VrTi%]

where T has domain of support (—, ). This is the pdf of a random variable distributed
according to Student’s ¢ distribution with n degrees of freedom. ]
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@ Example 15: Derivation of Fisher’s F Distribution

Let X; ~ x2 be independent of X, ~ y7, where y2 and y7 are Chi-squared distributions

with degrees of freedom a and b, respectively. We seek the distribution of the (scaled)
X 1 / a

ratio R = /b

Solution: Due to independence, the joint pdf of (X, X;), say f(x;, x»), is just the pdf of
X, multiplied by the pdf of X;:

a b
xf'l e x27'1 e

a * b b i
27 T[+] 27 T[]

domain[£f] = {{xi, 0, =}, {x,, 0, =}} && {a >0, b>0};

Fh
1]

Let Z = X,. Then, the joint pdf of (R, Z), say g(r, z), is obtained with:

x,/a
XZ/b
{{r, 0, =}, {2z, 0, «}} && {a >0, b>0};

Transform [ {r ==

7 z==x2}l f]l.

g

domain[g]

Then, the pdf of random variable R is:

Marginal[r, g]

with domain of support (0, ). This is the pdf of a random variable with Fisher’s F
distribution, with parameters a and b denoting the numerator and denominator degrees of
freedom, respectively. u

@ Example 16: Derivation of Noncentral F Distribution

Let X; ~ x2(A) be independent of X, ~ x7, where y2(A) denotes a noncentral Chi-squared

distribution with noncentrality parameter . We seek the distribution of the (scaled) ratio

_ Xi/a
T Xo/b’

Solution: Let f(x;, x,) denote the joint pdf of X; and X,. Due to independence, f(x;, x,)
is just the pdf of X; multiplied by the pdf of X,. As usual, the Continuous palette can be
used to help enter the densities:

£ = (2—a/2 @ (K /2 g (a-2)/2

. . a x; A x7 e
HypergeometricOFlRegularized [ — ) . ;
2 4 27 T'[ % ]

domain[£] = {{xi, 0, =}, {x;, 0, =}} & {a>0, b>0, A > 0};
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With Z = X;, the joint pdf of (R, Z), say g(r, z), is obtained with:

X, /a
82/b
{{x, 0, }, {2, 0, ©}}&& {a>0,b>0, A>0};

g

Transform[{r == ;, Z == xz}, f]i

domain[g]

Then, the pdf of random variable R is:

Marginal[r, g]

1
a2 gar, /2 ar 7 (b at+b
crey (7 ) ) =~
_ . a+b a ar A
HypergeometriclFlRegularized [T‘ g m}

with domain of support (0, »). This is the pdf of a random variable with a noncentral F
distribution with noncentrality parameter A, and degrees of freedom a and b. |

I 4.5 Sums and Differences of Random Variables

This section discusses random variables that are formed as sums or differences of other
random variables. §4.5 A applies the Transformation Method, while §4.5 B applies the
MGF Method which is particularly well-suited to dealing with sample sums and sample
means.

4.5 A Applying the Transformation Method

@ Example 17: Sum of Two Exponential Random Variables

Let X; and X, be independent random variables, each distributed Exponentially with
parameter A. We wish to find the density of X; + X5.

Solution: Let f(x;, x,) denote the joint pdf of (X, X3):

* ; domain[f] = {{x;, 0, o}, {x2, 0, }};

Let Y =X, +X, and Z = X,. Since X; and X, are positive, it follows that 0 <z <y < o0,
Then the joint pdf of (Y, Z), say g(y, z), is obtained with:

g
domain[g]

Transform[{y ==x; +%X,, Z =X}, £];
{{y, 2z, ~}, {2, 0, ¥}};
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Then, the pdf of Y = X + X; is:

Marginal [y, g]

_X
A

)\2

€ 'y
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with domain of support (0, ), which is the pdf of a random variable with a Gamma
distribution with shape parameter a = 2, and scale parameter » = A. This is easy to verify

using mathStatica’s Continuous palette.

@ Example 18: Sum of Poisson Random Variables

Let X; ~ Poisson(A) be independent of X, ~ Poisson(,). We seek the distribution of the

sum X; + X,.

Solution: Let f(x;, x,) denote the joint pmf of (X, X3):

e-ll Alxl e—lz 12 X2
£f = ;
X1 ! Xo !

domain[£f]

Let Y = X; + X, and Z = X,. Then the joint pmf of (Y, Z), say g(y, z), is:

g = Transform[{y ==X +X,, Z ==X,}, £]
et aYE 3

(y-2z)! z!

where 0 < z <y < o, We seek the pmf of ¥, and so sum out the values of Z:

Y
sol = Z Evaluate[g]

z=0

-A1-A Yy AL +Ap
e 12 )\l < =

T[1l+y]

)y

which simplifies further:

FullSimplify[sol, y € Integers]

(97)17)2 <)\1 + )\2)y
T[1l+vy]

{{x%1, 0, ©}, {%3, 0, ©}} && {Discrete};

This is the pmf of a Poisson(A; + A,) random variable. Thus, the sum of independent
Poisson variables is itself Poisson distributed. This result is particularly important in the
following scenario: consider the sample sum comprised of n independent Poisson(A)

variables. Then, ;" , X; ~ Poisson(n ).
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@ Example 19: Sum of Two Uniform Random Variables: A Triangular Distribution

Let X; ~ Uniform(0, 1) be independent of X, ~ Uniform(0, 1). We seek the density of
Y=X +X.

Solution: Let f(x;, x,) denote the joint pdf of (X, X3):
£f =1; domain[f] = {{x., 0, 1}, {x%2, O, 1}}:
Let Y = X; + X, and Z = X,. Then the joint pdf of (¥, Z), say g(vy, z), is:

egn = {y==Xj1 +Xy3, Z =Xy}, g = Transform[eqgn, f]

1

Deriving the domain of this joint pdf is a bit more tricky, but can be assisted by using
DomainPlot, which again plots the space in the y-z plane where g(y, z) > 0:

DomainPlot [egn, f£];

g
i //]/

Fig. 7: The space in the y-z plane where g(y, z) > 0

We see that the domain (the shaded region) can be defined as follows:

When y < 1: O<z<y<l1
When y > 1: l<y<l+z<2,orequivalently, 0<y-1<z<1

The density of Y, say h(y), is then obtained by integrating out Z in each part of the
domain. This is easiest to do manually here:

1
h = If [y< 1, Evaluate[.r,gd]z], Evaluate[j gd]z]]
0 y-1

If[y<ll YI 27Y]
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with domain of support:
domain[h] = {y, 0, 2};
Figure 8 plots the pdf of Y.

PlotDensity[h];

h

1L

0.8
0.6 +
04 +
02+

O.‘5 l 1.‘5 2 Y
Fig. 8: Triangular pdf
This is known as a Triangular distribution. More generally, if X, ..., X, are independent

Uniform(0,1) random variables, the distribution of S, =7 6 X; is known as the
Irwin—Hall distribution (see Example 18 of Chapter 2). By contrast, the distribution of
S, /n is known as Bates’s distribution (cf. Example 6 of Chapter 8). |

@ Example 20: Difference of Exponential Random Variables: The Laplace Distribution

Let X; and X, be independent random variables, each distributed Exponentially with
parameter A = 1. We seek the density of ¥ = X| — X;.

Solution: Let f(x;, x,) denote the joint pdf of X; and X,. Due to independence:
X ;

f=ze ™ xe domain[f] = {{x1, 0, o}, {x3, 0, «}} ;

Let Z = X,. Then the joint pdf of (Y, Z), say g(y, 2), is:

egqn = {y=X; -Xa, Z=X3}; g = Transform[eqn, f£f]

(e—y—2 z

Deriving the domain of support of Y and Z is a bit more tricky. To make things clearer, we
again use DomainPlot to plot the space in the y-z plane where g(y, z) > 0. Because x;
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and x, are unbounded above, we need to manually specify the plot bounds; we use
{x1, 0, 100}, {x5, 0, 100} here:

DomainPlot [egqn, £, {x,, 0, 100}, {x,, O, 100},
PlotRange - {{-2, 2}, {-1, 3}}1:

Fig. 9: The domain of support of ¥ and Z

This suggests that the domain (the shaded region in Fig. 9) can be defined as follows:

Wheny<0: O<-y=sz<®
Wheny>0: {0<y<o®, 0<z< %}

The density of Y, say h(y), is then obtained by integrating out Z in each part of the
domain. This is done manually here:

h =If [y <0, Evaluate[ng dlz] ’ Evaluate[ng dlz]]
-y 0

Y '
If[y<0, %, ez ]

with domain of support:
domain[h] = {y, -, «};

This is often expressed in texts as h(y) = % e !, for y € R. This is the pdf of a random
variable with a standard Laplace distribution (also known as the Double Exponential
distribution). u
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4.5B Applying the MGF Method

The MGF Method is especially well-suited to finding the distribution of the sum of
independent and identical random variables. Let (Xi, ..., X,,) denote a random sample of
size n drawn from a random variable X whose mgf is My (¢). Further, let:

s; = Z X; (sample sum)
4.4)

n
§ = Z X? (sample sum of squares)
i=1

Then, the following results are a special case of the MGF Theorem of Chapter 2:

mgf of s : M, (1) = f[lMX(t) = My} = (E[eX])
mgfof X = 2L Mz = M,(+) = (ML) = (E[egx])” 4.5)
mgf of 5, : M, (1) = fIlMXZ O = Mp@) = (El:etXZ])n

We shall make use of these relations in the following examples.

@ Example 21: Sum of n Bernoulli Random Variables: The Binomial Distribution

Suppose that the discrete random variable X is Bernoulli distributed with parameter p.
That is, X ~ Bernoulli(p), where P(X =1)=p, PX=0)=1-p,and0 < p < 1.

g p* (1 -p)' %
domain[g] = {x, 0, 1} && {0 <p < 1} && {Discrete};

For a random sample of size n on X, the mgf of the sample sum s; is derived from (4.5) as:

mgf, = Expect [e**, g]”

n

(1+ (-1+e%) p)

This is equivalent to the mgf of a Binomial(n, p) variable, as the reader can easily verify
(use the Discrete palette to enter the Binomial pmf). Therefore, if X ~ Bernoulli(p), then
s ~ Binomial(n, p). | |

@ Example 22: Sum of n Exponential Random Variables: The Gamma Distribution

Let X ~ Exponential(A). For a random sample of size n, (X, ..., X,,), we wish to find the
distribution of the sample sum s; = Y| X;.

Solution: Let f(x) denote the pdf of X:

£f=— e **; domain[£] = {x, 0, =} && {A>0};

1
A
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By (4.5), the mgf of the sample sum s is:

n

mgf_ = Expect[e**, £]

S1

n

(=)

This is identical to the mgf of a Gamma(a, b) random variable with parameter a = n, and
b = A, as we now verify:

xa—l e—x/b

g=s ——; domain[g] = {x, 0, «} && {a >0, b>0};
T[a] b2

Expect [e**, g]

(1-bt)?

Thus, if X ~ Exponential(A), then s; ~ Gamma(n, A). [ |

@ Example 23: Sum of n Chi-squared Random Variables

Let X ~ x%, a Chi-squared random variable with v degrees of freedom, and let
(X1, ..., X;;) denote a random sample of size n drawn from X. We wish to find the
distribution of the sample sum s; = X7, X;.

Solution: Let f(x) denote the pdf of X:

xV/2-1 g-%/2
f=ﬁ—; domain[f] = {x, 0, o} && {v>0};
272 [ 1]

The mgf of X is:

mgf = Expect[e®™, £]

— This further assumes that: {t < %}

(1-2t) V2
By (4.5), the mgf of the sample sum s is:

mgf. = mgf® // PowerExpand

S1

(1-2¢t) =

which is the mgf of a Chi-squared random variable with nv degrees of freedom. Thus, if
X ~ x2,thens; ~ x2,. |
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@ Example 24: Distribution of the Sample Mean for a Normal Random Variable

If X ~ N(i, 02), find the distribution of the sample mean, for a random sample of size n.

Solution: Let f(x) denote the pdf of X:

_ (=)

@ 2.2
f=——; domain[f] = {x, -, «} && {u € Reals, o> 0};

oV2mn

Then the mgf of the sample mean, X, is given by (4.5) as (E [e% X ] )n:

t n
Expect [e? x, f] // PowerExpand // Simplify

t? o?
(et Ut =g

which is the mgf of a N(u, ";—2) variable. Therefore, X ~ N(u, "'TZ) [ |

@ Example 25: Distribution of the Sample Mean for a Cauchy Random Variable

Let X be a Cauchy random variable. We wish to find the distribution of the sample mean,
X, for a random sample of size n.

Solution: Let f(x) denote the pdf of X:

1
f=z — ; domain[£f] = {x, —oo, };
7t (1 +x2) [£] =1 }

The mgf of a Cauchy random variable does not exist, so we shall use the characteristic
function (cf) instead, as the latter always exists. Recall that the cf of X is E[e''¥]:

cf = Expect[el®t®, f]
— This further assumes that: {Im[t] ==0}

(e—t Sign[t]

By (4.5), the cf of X is given by:

n

t
cf; = (cf /.t~ —) // Simplify[#, {n> 0, n € Integers}] &
n

(e—t Sign[t]

Note that the cf of X is identical to the cf of X. Therefore, if X is Cauchy, then X has the
same distribution. | |
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@ Example 26: Distribution of the Sample Sum of Squares for X; ~ N(u, 1)
— Derivation of a Noncentral Chi-squared Distribution

Let (X1, ..., X;,) be independent random variables, with X; ~ N(u, 1). We wish to find the
density of the sample sum of squares s, = Y, ; X? using the mgf method.

Solution: Let X ~ N(u, 1) have pdf f(x):

e-7 (*x-1?
f=———; domain[£f] = {x, —oo, };

V2
By (4.5), the mgf of 5, is (E[e' X" ]) :

n
mgf = Expect[etxz, f] // PowerExpand

— This further assumes that: {t < %}

n

eTIT (1-2¢t) ™2

This expression is equivalent to the mgf of a noncentral Chi-squared variable y2 (1) with n
degrees of freedom and noncentrality parameter A = nu?. To demonstrate this, we use
mathStatica’s Continuous palette to input the y2 (1) pdf, and match its mgf to the one
derived above:

HypergeometricOFlRegularized [ 121- ’ x:‘ ]

£f = ;
2n/2 @(x+2A)/2 g¢- (n-2)/2

domain[f] = {x, 0, <} && {n>0, A>0};
Its mgf is given by:

Expect [e**, f]
— This further assumes that: {t < %}

eT7E (1-2t) ™2

We see that the mgf’s are equivalent provided A = n /%, as claimed. Thus, if X ~ N(u, 1),
then s, = X7, X? ~ xa(np?). If £ =0, the noncentrality parameter disappears, and we
revert to the familiar Chi-squared(n) pdf:

£f/. 2> 0

1

2—n/2 (e—x/2 (-2+n)

X7
i3]

Figure 10 illustrates the noncentral Chi-squared pdf x2_,(A), at different values of A.
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0.15 +

0.1

0.05 -

Fig. 10: Noncentral Chi-squared pdf whenn =4andA=0,1,2,3

@ Example 27: Distribution of the Sample Sum of Squares About the Mean

Let (X, ..., X,,) be independent random variables, with X; ~ N(0, 1). We wish to find the
density of the sum of squares about the sample mean; i.e. S§ =", (X; —)_()2 where
X = % Y., X;. Unlike previous examples, the random variable SS is not listed in (4.5).
Nevertheless, we can find the solution by first applying a transformation known as
Helmert’s transformation and then applying a result obtained above with the mgf method.
Helmert’s transformation is given by:

Y= (X0 -X)/V2
Yo = (X +X -2X3)/V6

V= (X + X+ X =3X9 VT2 (4.6)

A
Il

X1 +X + = + X, —(n—-1)X,) /[Vn(n—1)
X1 +X + - +X,)/Vn

=
I

For our purposes, the Helmert transformation has two important features:
(i) Ifeach X; is independent N(0, 1), then each Y; is also independent N (O, 1).
(i) SS =31, X-X) =3 v

The rest is easy: we know from Example 26 that if Y; ~ N(O, 1), then Z?:_ll Y? is Chi-

1
squared with n—1 degrees of freedom. Therefore, for a random sample of size n on a

standard Normal random variable, 3" | (X; — X )Y ~ X2,
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To illustrate properties (i) and (ii), we can implement the Helmert transformation
(4.6) in Mathematica:

Helmert [n_Integer] := Append[
I owy - §xs >, %y
=1 i J+1 . =1 i
Table[y; == — ;{3 n-1}], ya ==

V3 (G+1) Van

]

When, say, n = 4, we have:

X = Table[x;, {i, 4}];
Y = Table[y;, {i, 4}];
eqn = Helmert[4]

X1 - X
{ Y1 == ’

V2

X1 + Xy — 2 X3

Y2 == ’
NG
Vs == X1 + Xy +X3 -3 Xy
3 == ’
2+/3
1
Ya == > (X1 + Xy + X3 +Xgq) }

Let f(X) denote the joint pdf of the X;:

f=ﬂ ©  /.nog domain[£] = Thread[{X, -e, =}];

and let g(y) denote the joint pdf of the Y;:

g Transform[egn, f£f]

domain [g] Thread[{?, —oo, 00}];

e7 (Vi-vi-vi-vi)
4 2

Property (i) states that if the X; are N(0, 1), then the Y; are also independent N(O, 1).
This is easily verified —the marginal distributions of each of Y;, ¥>, Y3 and Y;:

Map[ Marginal[ #, 9] &, i‘]

¥ 3 v v}

e 7 2 e

s Var Vs vor)

. are all N(0, 1), while independence follows since the joint pdf g(y) is equal to the
product of the marginals.
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. —_) - . e
Property (i) states that Y}/, (X; —X) = Y- ¥?. To show this, we first find the
inverse of the transformation equations:

inv = Solve[eqn, i] I1i1

. =2 . .
and then examine the sum Z[":l (X; —X)", given the transformation of X to Y:

n

1 & )\’
xi——in /. n-»> 4 /. inv // Simplify
: | n

1-1 i=1

Yi+vs+Ys

One final point is especially worth noting: since SS is a function of (Y;, Y>, ¥3), and since
each of these variables is independent of Yy, it follows that SS is independent of Y, or any
function of it, including Y4 / \/ ;, which is equal to X, by (4.6). Hence, in Normal samples,
SS is independent of X. This applies not only when n = 4, but also quite generally for
arbitrary n. The independence of SS and X in Normal samples is an important property
that is useful when constructing statistics for hypothesis testing. ]

I 4.6 Exercises
1

Let X ~ Uniform(0, 1). Show that the distribution of Y = log(%) is standard
Logistic.

2.  Let X ~ N(u, 0%). Find the distribution of ¥ = exp(exp(X)).
3. Findthe pdfof Y =1/X:

(i) if X ~ Gamma(a, b); (Y has an InverseGamma(a, b) distribution).
(i) if X ~ PowerFunction(a, ¢); (Y has a Pareto distribution).
(>iii) if X ~ InverseGaussian(., A); (Y has a Random Walk distribution).

Plot the Random Walk pdf when ;1 =1 and A = 1, 4 and 16.

4. Let X have a Maxwell-Boltzmann distribution. Find the distribution of ¥ = X* using
both the Transformation Method and the MGF Method.

5. Let X; and X, have joint pdf f(x;, x,) =4 x1x,, 0 <x; < 1,0 < x, < 1. Find the joint
pdf of Y| = X% and Y, = X, X;. Plot the domain of support of Y; and Y>.
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Let X; and X, be independent standard Cauchy random variables. Find the
distribution of Y = X; X, and plot it.

Let X; and X, be independent Gamma variates with the same scale parameter b. Find

o X
the distribution of Y = X%

Let X ~ Geometric(p) and Y ~ Geometric(g) be independent random variables. Find

the distribution of Z =Y — X. Plot the pmf of Z when (i) p=¢= %, @) p= %,

q=5-

Find the sum of n independent Gamma(a, b) random variables.



