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Chapter 5

Systems of Distributions

I 5.1 Introduction

This chapter discusses three systems of distributions: (i) the Pearson family, §5.2, which
defines a density in terms of its slope; (ii) the Johnson system, §5.3, which describes a
density in terms of transformations of the standard Normal; and (iii) a Gram—Charlier
expansion, §5.4, which represents a density as a series expansion of the standard Normal
density.

The Pearson system, in particular, is of interest in its own right because it nests many
common distributions such as the Gamma, Normal, Student’s 7, and Beta as special cases.
The family of stable distributions is discussed in Chapter 2. Non-parametric kernel density
estimation is briefly discussed in §5.5, while the method of moments estimation technique
(used throughout the chapter) is covered in §5.6.

I 5.2 The Pearson Family

5.2 A Introduction

The Pearson system is the family of solutions p(x) to the differential equation

dp) _ _ a+x
dx = ot x+cyx? P G

that yield well-defined density functions. The shape of the resulting distribution will
clearly depend on the Pearson parameters (a, cg, ¢;, ¢2). As we shall see later, these
parameters can be expressed in terms of the first four moments of the distribution
(§5.2D). Thus, if we know the first four moments, we can construct a density function
that is consistent with those moments. This provides a rather neat way of constructing
density functions that approximate a given set of data. Karl Pearson grouped the family
into a number of types (§5.2 C). These types can be classified in terms of 81 and 3, where

2
_ 'u3 _ U4
= —= and = =, 52
Bi s B> 2 (5.2)
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The value of \/ E— is often used as a measure of skewness, while 3, is often used as a
measure of kurtosis. Figure 1 illustrates this classification system in (8;, 5, ) space.

0.3 0.6 0.9 12 1.5 1.8
Bi

Fig. 1: The (3, 5, chart for the Pearson system

The classification consists of several types, as listed in Table 1.

Main types : Type I including I (U)and I (J), Type IV and Type VI
Transition types : Type 11l (aline), Type V (aline)

Symmetrical types : If the distribution is symmetrical, then 13 =0,s0 5, =0.
This yields three special cases :
e The N at (0, 3) denotes the Normal distribution.
* Type II (not labelled) occurs when 8; = 0 and 3, < 3,
and is thus just a special case of Type 1.
* Type VII occurs when B, = 0 and 3, > 3 (a special case of Type IV).

Table 1: Pearson types

The dashed line denotes the upper limit for all distributions. The vertical axis is ‘“upside-
down’. This has become an established (though rather peculiar) convention which we
follow. Type I, I(U) and I(J) all share the same functional form —they are all Type I.
However, they differ in appearance: Type I(U) yields a U-shaped density, while Type I(J)
yields a J-shaped density.! The electronic notebook version of this chapter provides an
animated tour of the Pearson system here: [+
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5.2 B Fitting Pearson Densities

This section illustrates how to construct a Pearson distribution that is consistent with a set
of data whose first four moments are known. With mathStatica, this is a two step process:

(i) Use PearsonPlot [{u,, iz, Ly)] to ascertain which Pearson Type is consistent
with the data.

(ii) If it is say Type IIl, then PearsonIII[u, {i,, U, 1), X] yields the desired
density function f(x) (and its domain).

The full set of functions is:

PearsonI PearsonIT PearsonIII PearsonIV
PearsonV PearsonVI PearsonVII

In the following examples, we categorise data as follows:

e Is it population data or sample data?
e [s it raw data or grouped data?

@ Example 1: Fitting a Pearson Density to Raw Population Data

The marks.dat data set lists the final marks of all 891 first year students in the
Department of Econometrics at the University of Sydney in 1996. It is raw data because it
has not been grouped or altered in any way, and may be thought of as population data (as
opposed to sample data) because the entire population’s results are listed in the data set.
To proceed, we first load the data set into Mathematica:

data = ReadList["marks.dat"]:;
and then find its mean:

mean = SampleMean[data] // N

58.9024

We can use the mathStatica function FrequencyPlot to get an intuitive visual
perspective on this data set:

FrequencyPlot [data];

140
120
100
80
60
40
20

20 40 60 80
Fig. 2: Frequency polygon of student marks
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The x-axis in Fig. 2 represents the range of possible marks from 0 to 100, while the y-
axis plots frequency. Of course, there is nothing absolute about the shape of this plot,
because the shape varies with the chosen bandwidth c¢. To see this, evaluate
FrequencyPlot [data, {0, 100, c}] at different values of ¢, changing the bandwidth
from, say, 4 to 12. Although the shape changes, this empirical pdf nevertheless does give a
rough idea of what our Pearson density will look like. Alternatively, see the non-
parametric kernel density estimator in §5.5.

Next, we need to find the population central moments (,, 5, ,. Since we have
population data, we can use the CentralMoment function in Mathematica’s
Statistics ' DescriptiveStatistics’ package, which we load as follows:

<< Statistics’

Us34 = Table[ CentralMoment [data, r], {r, 2, 4}] // N

Step (i): PearsonPlot [Liz34 ] calculates 8; and B, from fi534, and then indicates
which Pearson Type is appropriate for this data set by plotting a large black dot at the

point (81, 5):

PearsonPlot [L234]

{B1 - 0.173966, B2 - 3.55303}

The B, 5, Chart for the Pearson System

0.3 0.6 0.9 1.2 1.5 1.8

Bi

Fig. 3: The marks data is of Type IV
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Step (ii): The large black dot is within the Type IV zone (the most feared of them
all!), so the fitted Pearson density f(x) and its domain are given by:

{f, domain[f]} = PearsonIV[mean, U334, X]

{

1.14587 x 1025 134877 ArcTan[1.55011-0.0169455 x]
13.2177 ' {x, —eo, m}}

(448.276 - 6.92074 x+ 0.0378282 x?)

The FrequencyPlot function can now be used to compare the empirical pdf (—) with
the fitted Pearson pdf (——-):

Pl = FrequencyPlot [data, f];

0.03 +

0.025 |

0.02

0.015 |

0.01

0.005 |

Fig. 4: The empirical pdf (—) and fitted Pearson pdf (— — —) for the marks data

@ Example 2: Fitting a Pearson Density to Raw Sample Data
The file grain.dat contains data that measures the yield from 1500 different rows of
wheat. The data comes from Andrews and Herzberg (1985) and StatLib. We shall treat it
as raw sample data. To proceed, we first load the data set into Mathematica:

data = ReadList["grain.dat"];

and find its sample mean:

mean = SampleMean[data] // N

587.722
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Because this is sample data, the population central moments (i, (5, 1, are unknown. We
shall not use the CentralMoment function from Mathematica’s Statistics package to
estimate the population central moments, because the CentralMoment function is a
biased estimator. Instead, we shall use mathStatica’s UnbiasedCentralMoment
function, as discussed in Chapter 7, because it is an unbiased estimator of population
central moments (and has many other desirable properties). As it so happens, the bias from
using the CentralMoment function will be small in this example because the sample
size is large, but that may not always be the case. Here, then, is our estimate of the vector

(g, Mzs Hy):

fi,3, = Table [UnbiasedCentralMoment [data, r], {r, 2, 4}]

{9997.97, 576417., 3.39334x10%}

PearsonPlot [[1,;,] shows that this is close to Type III, so we fit a Pearson density,
f(x), to Type III:

{f, domain[f]} = PearsonIII[mean, [l,3,, X]

{2.39465x107°° 0-0324339x (_7601.05 + 30.832 x) *0-0%1
{x, 246.531, o}}

Once again, the FrequencyPlot function compares the empirical pdf (—) with the
fitted Pearson pdf (- —-):

FrequencyPlot [data, f];

0.004

0.003

f 0002 -

0.001

Fig. 5: The empirical pdf (—) and fitted Pearson pdf (— — —) for wheat yield data
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@ Example 3: Fitting a Pearson Density to Grouped Data

Table 2 stems from Elderton and Johnson (1969, p.5):

age X | freq
<19 34
20-24 145
25-29 156
30-34 145
35-39 123
40 -44 103
45-49 86
50 -54 71
55-59 55
60 —64 37
65 -69 21
70 -74 13
75-79
80 -84 3
85-89 1

Table 2: The number of sick people at different ages (in years)

Here, ages 20-24 includes those aged from 19 ; up to 24 1, and so on. Let X denote the
mid-point of each class interval of ages (note that these are equally spaced), while freq
denotes the frequency of each interval. Finally, let 7 denote the relative frequency. The
mid-point of the first class is taken to be 17 to ensure equal bandwidths. Then:

X
freq

{17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87};
{34, 145, 156, 145, 123, 103, 86, 71, 55, 37, 21, 13, 7, 3, 1};
freq/ (Plus@e freq) ;

The mathStatica function FrequencyGroupPlot provides a ‘histogram’ of this
grouped data:

FrequencyGroupPlot [ {X, freq}]:

150

125

100
75
50

25 ”
0

20 30 40 50 60 70 8 90

Fig. 6: ‘Histogram’ of the number of sick people at different ages

which gives some idea of what the fitted Pearson density should look like.
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When data is given in table form, the mean is conventionally taken as Zf;l X Ti,
where X; is the mid-point of each interval, and 7; is the relative frequency of each interval,
over the k class intervals. Thus:

mean = X.t // N

37.875

A quick and slightly dirty2 (though widely used) estimator of the " central moment for
grouped data is given by:

DirtyMu[r_] := (X-mean) .t

Then our estimates of (1, , 5, 1) are:

~

Py, = {DirtyMu[2], DirtyMu[3], DirtyMu[4]}

{191.559, 1888.36, 107703.}
which is Type I, as PearsonPlot [[l,,, ] will verify. Then, the fitted Pearson density is:

{£, domain[£f]} = PearsonI[mean, f[l,3,, X]

{9.70076 x107% (94.3007 -1. x)277°7% (-16.8719 + 1. x)°-406924
{x, 16.8719, 94.3007}}

Of course, the density f(x) should be consistent with the central moments that generated
it. Thus, if we calculated the first few central moments of f(x), we should obtain
{1,—~191.559, 11;—1888.36, 11,—107703}, as above. A quick check verifies these results:

Expect[(x—mean){2'3"”, £f]
{191.559, 1888.36, 107703.}

The FrequencyGroupPlot function can now be used to compare the ‘histogram’ with
the smooth fitted Pearson pdf:

FrequencyGroupPlot [ {X, freq}, f];

0.03
0.025
0.02

f 0015
0.01
0.005

20 40 60 80
X

Fig. 7: The ‘histogram’ and the fitted Pearson pdf (smooth)
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5.2C Pearson Types

Recall that the Pearson family is defined as the set of solutions to

dp(x) _ _ a+x
dx =t x+cyx? PO

In Mathematica, the solution to this differential equation can be expressed as:

(a + x) p[x]
c0 +clx+c2 x?

Pearson := DSolve [p’ [%] = - s P[x], x]

Since ﬁ—i’ =0 when x = —aq, the latter defines the mode, while the shape of the density will
depend on the roots of the quadratic cy + ¢; x + ¢, x>. The various Pearson Types
correspond to the different forms this quadratic may take. We briefly consider the main
seven types, in no particular order. Before doing so, we set up MrClean to ensure that we

start our analysis of each Type with a clean slate:
MrClean := ClearAll[a, c0, cl, c2, p, x];

Type IV occurs when ¢y + ¢; x + ¢, x* does not have real roots. In Mathematica, this
is equivalent to finding the solution to the differential equation without making any special
assumption at all about the roots. This works because Mathematica typically finds the
most general solution, and does not assume the roots are real:

MrClean; Pearson // Simplify

(c1-2 ac2) ArcTan [ Sl 22X

\ -c12 +4 c0 c2

{{p[x] »e Vi (cO+x (cl+c2x)) 7 c[1]}]}

The domain is {x, —o, o}. Under Type IV, numerical integration is usually required to
find the constant of integration C[1].

Type VII is the special symmetrical case of Type IV, and it occurs when ¢; = a = 0.
This nests Student’s ¢ distribution:

% /. {c1-50, a-0}
{{plx] - (cO+c2x?) 77 c[1]}}

Type III (Gamma distribution) occurs when ¢, = 0:

MrClean; c2 =0; Pearson // Simplify

[{p[x] »e & (cO+clx) s c[1]})

In order for this solution to be a well-defined pdf, we require p(x) > 0. Thus, if ¢; > 0, the
domain is x > —c¢qy /c¢y; if ¢; <0, the domain is x < —¢g /¢; .
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Type V occurs when the quadratic ¢y + ¢; x + ¢, x* has one real root. This occurs
when ¢? — 4 ¢ ¢, = 0. Hence:

c1?
MrClean; c¢0 = 103 ; Pearson // Simplify
c

cl+2ac2

{{plx] » e=7aT (cl+2c2x) /2 C[1]}}

The Normal distribution is obtained when ¢; = ¢, = 0:
MrClean; cl=0; c¢c2=0; Pearson
[{plx] »e %% c[11})

Completing the square allows us to write this as:

(x+a)?

p[x] =ke 2= ; domain[p[x]] = {x, -, =};

where, in order to be a well-defined density, constant k must be such that the density
integrates to unity; that is, that P(X < «) = 1:

Solve[ Prob[e, p[x]] ==1, k]

— This further assumes that: {cO0>0}

(b Jerm )

The result is thus Normal with mean —a, and variance ¢, > 0.

That leaves Type I, Type II and Type VI. These cases occur if ¢o +¢j x+ ¢, x> = 0
has two real roots, r; and r,. In particular, Type I occurs if r; <0 <r, (roots are of
opposite sign), with domain r; < x <r,. This nests the Beta distribution. Type II is
identical to Type I, except that we now further assume that r; = —r,. This yields a
symmetrical curve with 8; = 0. Type VI occurs if r; and r, are the same sign; the domain
isx>r, if0<r; <r,orx<r,if r, <ry <O0. In the case of Type VI, with two real roots
of the same sign, one can express co + ¢; X + ¢ x> as ¢(x —r;) (x —rp). The family of
solutions is then:

MrClean;

a+x
c2 (x-rl) (x-1r2)

DSolve [p’ [x] == - p[x], p[x], x] //
Simplify

{{p[x] » (-rl+x) =Fe= (-r2+x) =57 c[1]})

where the constant of integration can now be solved for the relevant domain.
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5.2 D Pearson Coefficients in Terms of Moments
ClearAll[a, c0, cl, c2, egn, u]

It is possible to express the Pearson coefficients a, cg, ¢; and ¢, in terms of the first four
raw moments /lr (r=1,4). To do so, we first multiply both sides of (5.1) by x" and
integrate over the domain of X:

fm X (co +c1 x + ¢ x%) % dx = - fwx’(a+x)p(x)dx. (5-3)

If we integrate the left-hand side by parts,
ffg’dx = fgr —f flgdx Withg’:—dp(x)
_w —® —oo dx
and break the right-hand side into two, then (5.3) becomes

X (co+c1x+ e xz)p(x)]

- f v{rco XU+ X+ (42X p)dx (5.4)

= —j::ax’ px)dx - fmxrﬂ p(x)dx

—©

If we assume that x" p(x) - 0 at the extremum of the domain, then the first expression on
the left-hand side vanishes, and after substituting raw moments (1 for integrals, we are left
with

’

—reof, — r+ e, —F+2)erl,y, = —ap, — [, . (5.5)

This recurrence relation defines any moment in terms of lower moments. Further, since
the density must integrate to unity, we have the boundary condition /10 =1. In
Mathematica notation, we write this relation as:

eqnfr_] :=
(-xe0f, - (x+1)eli, - (x+2) €2,y == -al, - [,,)
/by ~>1

We wish to find a, ¢g, ¢; and ¢, in terms of /Jr. Putting =0, 1, 2 and 3 yields the
required 4 equations (for the 4 unknowns) which we now solve simultaneously to yield the
solution:
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Z = Solve[Table[eqn[r], {x, 0, 3}], {a, c0, cl, c2}]
// Simplify

2, ;3 , 2, , ;3 ;2 ;o
20 py py By =12 py Ly —Hy (3 U2+U4)+U1 (’9 My =8 p13+13 1y U4)

a— PER P Tz, .2 P
2 (9u2+4u1 Uy =16 Ly py Uy +6 [y =5 Ly L+ (—3 u2+5u4))
;o 2, , ;2 ;o ;2 ;2 ;o
My H3 (“2*“4)*“2 (3 py =4, 114)*#1 (’4 My +3 Uy My
Co = PER L 7, .2 P
2 (9 Uy +4 g s =16 [y gy Py +6 LUy =5 py Ly, +1y (—3 u2+5u4))
2, ;3 , 2, , ;3 ,2 ;o
8 Ly [y Hy =6y [yl (3 u2*“4)*“1 (’3 Hy=2 ps+7 [y 114)
= PERE T P P
2|9 Uy +4 g py =16 [y py Uy +6 Ly =5 Ly L+ (—3u2+5u4))
3,3, . 2,2 2,
6 py+4 g ps =10 g L1y Ly +3 Uy =2y [y +11 (’3 My +2 114)
02%

33 PV z ., 2 z
219 Uy +4 g py =16 [y py Uy +6 Ly =5 Ly L+ (—3 Uy +5 u4))
’ ’
If we work about the mean, then (1, =0, and 1, =y, for r = 2. The formulae then become:

z/. {l:l]__)ol I'l—Hl}

Mz (3 pd+py)

4= T (936 125 1y 1)
o = 3 1:92 155:16%;;71152;1@4;4)
R ST Es I sy
R 6 13+3 U5-2 s Uy

2 (9 u3+6 L3 -5us L)

Note that a and ¢; are now equal; this only applies when one works about the mean. With
these definitions, the Pearson Types of §5.2 C can now be expressed in terms of the first 4
moments, instead of parameters a, ¢y, c¢; and c¢;. This is, in fact, how the various
automated Pearson fitting functions are constructed (§5.2 B).
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5.2 E Higher Order Pearson-Style Families

Instead of basing the Pearson system upon the quadratic ¢, + c¢; x + ¢ x>, one can

instead consider using higher order polynomials as the foundation stone. If the moments
of the population are known, then this endeavour must unambiguously yield a better fit. If,
however, the observed data is a random sample drawn from the population, there is a trade-
off: a higher order polynomial implies that higher order moments are required, and the
estimates of the latter may be unreliable (have high variance), unless the sample size is
‘large’.

In this section, we consider a Pearson-style system based upon a cubic polynomial.
This will be the family of solutions p(x) to the differential equation

dpx) _ _ a+x
dx = c+cax+ceoxt+ax p). (5.6)

Adopting the method introduced in §5.2 D once again yields a recurrence relation, but
now with one extra term on the left-hand side. Equation (5.5) now becomes

—reo i, =+ Dei i, — r+2)ea iy —(r+3)e3ly = —afy, — [,,,. (5.7)
Given the boundary condition /1, = 1, we enter this recurrence relation into Mathematica as:

egqn2[r_] :=
(-xe0f, - (x+1)eli, - (x+2) c2i,,, - (xr+3)c3 i, ==

_al:lr_l:lr+1) /°l’10"1

Our objective is to find a, ¢y, ¢, ¢, and c¢3 in terms of /Jr. Putting r =0, 1, 2, 3, 4 yields
the required 5 equations (for the 5 unknowns) which we now solve simultaneously:

Z1l = Solve[Table[egn2[r], {xr, 0, 4}], {a, c0, c1, c2, c3}]:

The solution is rather long, so we will not print it here. However, if we work about the
mean, taking /11 =0, and /1, = u, for r = 2, the solution reduces to:

22 = z1[1] /. {f; » 0, k> u} // Simplify;
Z2 // TableForm

—117 3 3 pag =16 3 g +81 pud pus+5 pul ps +in pi3 (25 13 +24 i3 p15)+3 13 (16 483 =18 pg pts +7 i3 pre)+p13 (—12 p3+7 uy 16)
2(96 pd =27 13 114 =50 (13+93 pi3 g prs+15 413 (T p3+9 a3 1) +9 183 (2 1 =7 p16) =42 13 o+t (=272 53 1a =36 42 +35 1y 1))

=343 (4p3 =3 3 ps)+8 13 (=2 43 +3 s pis )+ip (40 g3 =77 3 g pis +21 3 pe)+43 (3 43 pag +36 3 =28 piy pi)

2(=96 4 +27 i3 p1a+50 13 —93 pi3 pra ps—15 13 (7 p3+9 i3 pis)+42 13 pe+413 (—18 13 +63 pe )tz (272 1 p1a +36 23 =35 g 1))

=33 43 w3 g =16 113 pa +27 3 s +5 g ps +pap py (37 pd+6 3 pas)+3 p3 (43 —16 py pus+7 p3 e )+pz (=12 ud+7 py pie)
296 u3 =27 puf 11 =50 13 +93 3 pg s +15 13 (7 13 +9 pz p1s)+9 113 (2 113 =7 p6) =42 3 prg+pia (=272 13 s =36 2 +35 ps pig))

—48 pd+18 1 pa +20 13 =39 3 pa ps =3 3 (22 43423 i3 ps)—=6 13 (2 13 ~7 pie)+21 13 po+pp (143 13 pua+12 p2 —14 s pio)

2(=96 pd+27 i3 g +50 p3 =93 i3 g ps—15 13 (7 p3+9 i3 pas )+42 13 pro+u3 (=18 13 +63 pg)+pz (272 13 g +36 42 =35 iy p1g))

14 13 p py =9 i3 ps+ps 2 =3 3 pis )+pan (=6 413 +pay pis)
~96 pd +27 il g +50 13 —93 3 gy ps—15 13 (7 p3+9 pi3 pas)+42 (3 pi+43 (=18 g3 +63 o) +pa (272 pih pa +36 2 =35 s pio)
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which is comparatively compact (for a more legible rendition, see the electronic
notebook). Whereas the second-order (quadratic) Pearson family can be expressed in
terms of the first 4 moments, the third-order (cubic) Pearson-style family requires the first
6 moments. Note that a and ¢; are no longer equal.

@ Example 4: Fitting a Third-Order (Cubic) Pearson-Style Density

In this example, we fit a third-order (cubic) Pearson-style density to the data set:
marks.dat. Example 1 fitted the standard second-order (quadratic) Pearson distribution
to this data set. It will be interesting to see how a third-order Pearson-style distribution
compares. First, we load the required data set into Mathematica, if this has not already
been done:

data = ReadList["marks.dat"]:;
The population central moments (i, , L5, Ly, s and L are given by:

<< Statistics’

I = Table[u, » CentralMoment [data, r] // N, {xr, 2, 6}]

{uz - 193.875, us3 » -1125.94, py > 133550.,
Us > -2.68578x10%, g > 1.77172x10%}

In the quadratic system, this data was of Type IV (the most general form). Consequently,
in the cubic system, we will once again try the most general solution (i.e. without making
any assumptions about the roots of the cubic polynomial). The solution then is:

a+x

DSolve [p’ [x] == - p[x], p[x], x]

c0 + clx + c2x2 +c3 x3

2 3 aLog [x-#1]+Log [x-#1] #1
-RootSum [cO0+cl #1+c2 #1°+c3 #1° &, W&] c [1] }}

{{p[x] - e

Mathematica provides the solution in terms of a RootSum object. If we now replace the
Pearson coefficients {a, co, c|, ¢z, c3} with central moments {.i,, L5, [y, Us, Hg} Via Z2
derived above, and then replace the latter with the empirical [i, we obtain:

a Log [x-#1] +Log [x-#1] #1 ]

-RootSum [c0+c1 #1l+c2 #12+c3 #13&, o
@ cl+2c2 #1+3 c3 #1

sol =

z2 /. i // Simplify

((-31.6478 -52.712 1) +x) °-8636976.66825 %
((-31.6478 +52.712 1) +x) 8367068255 (556 021 4+ x)19-7274

while the constant of integration over, say, {x, —100, 100} is:

cn = NIntegrate[sol, {x, -100, 100}]

4.22732 x10%?
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A quick plot illustrates:

Plot[sol /cn, {x, -50, 50}]:

-40 =20 20 40

Fig. 8: Cubic Pearson fit for the marks data set

This looks identical to the plot of f derived in Example 1, except the origin is now at zero,
rather than at the mean. If f from Example I is derived with zero mean, one can then
Plot[f-sol/cn, {x,-50,50}] to see the difference between the two solutions.
Doing so yields Fig. 9.

0004 +

0.00002 +

—-0.00002 \-

—-0.00004

—-0.00006 -

Fig. 9: The difference between the quadratic and cubic Pearson fit

The difference between the plots is remarkably small (note the scale on the vertical axis).
This outcome is rather reassuring for those who prefer to use the much simpler quadratic
Pearson system. ]
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I 5.3 Johnson Transformations

5.3 A Introduction

Recall that the Pearson family provides a unique distribution for every possible (81, £,)
combination. The Johnson family provides the same feature, and does so by using a set of
three transformations of the standard Normal. In particular, if Z ~ N(0, 1) with density
@(z), and Y is a transform of Z, then the Johnson family is given by:

(1) Sy (Lognormal) Y = exp(% S Z =y+dlog(Y) O<y<m)

(2) Sy (Unbounded) Y= sinh(% S Z=vy+6 sinh™! Y) (=% <y < )

(3) S (Bounded) Y = ﬁ & Z=y+dlog(+ O<y<l)
exp (— =5~

Applying a second transform X =&+ AY (or equivalently Y = XT_f) expands the
system from two parameters (y, d) to the full set of four (y, 0, &, A), where 6 and A are
taken to be positive. Since X = £ + A Y, the shape of the distribution of X will be the same
as that of Y. Hence, the parameters may be interpreted as follows: y and ¢ determine the
shape of the distribution of X; A is a scale factor; and & is a location factor. Figure 10
illustrates the classification system in (8;, 3,) space.

2 T -
3 N Sp
41
B>
5 St
6 L
Sy
7 L
0.3 0.6 0.9 1.2 15 1.8

Bi

Fig. 10: The S, 3, chart for the Johnson system
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Several points are of note:

(i) The classification consists of two main types, namely S;; and Sg. These are separated
by a transition type, the Sy line, which corresponds to the family of Lognormal
distributions. The N at (8, B82) = (0, 3) once again denotes the Normal distribution,
which may be thought of as a limiting form of the three systems as § — .

(i) The Sy system is termed unbounded because the domain here is {y: y € R}. The Sp
system is termed bounded because the domain for this system is {y: 0 <y < 1}.

(iii) The dashed line represents the bound on all distributions, and is given by 8, — 8; = 1.

Whereas the Pearson system can be easily ‘automated’ for fitting purposes, the Johnson
system requires some hands-on fine tuning. We consider each system in turn: S; (§5.3 B);
Sy (§5.3 C); and Sp (§5.3 D).

5.3B S, System (Lognormal)
Let Z ~ N(0, 1) with density ¢(z):

¢ = ; domain[¢] = {z, -, »} && {y € Reals, 6§ > 0};

The S; system is defined by the transformation Y = exp(z—;y). Then, the density of Y, say
8y, is:

g Transform [y == e% , ¢>]

zZ-Y

domain[g] = TransformExtremum [y ==e’s , ¢>]

e-7 (y+LoglyD)? 5

27Ty

{v, 0, o} && {y € Reals, 6 >0}
The Lognormal density is positively skewed, though as ¢ increases, the curve tends to

symmetry. In Fig. 11, the density on the far left corresponds to a ‘small’ ¢, while each
successive density to the right corresponds to a doubling of 6.

8

0.2 0.4 0.6 0.8 1
Fig. 11: The Lognormal pdf g(y) when y =2, and 6 = 2, 4, 8 and 16
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Since Y = exp Z , and Z has density ¢(z), the 7™ raw moment E[Y "] can be expressed
1)

as:

(z-¥) ¢

Q = Expect [e 5, ¢>]

r (r-2y9o)

e 28

Thus, the first 4 raw moments (rm) are:

rm = Table[i, » Q, {x, 4}]

’ 1-2y6 ’ 2-2v6 ’ 3(3-2v9) ’ 2 (4-2v6)
{uleezéf LUy > @ T Uy e 2, U, > e & }

This can be expressed in terms of central moments (cm), as follows:

cm = Table|
CentralToRaw[r] /. rm // Simplify,
{r, 2, 4}1;

cm // TableForm

1-2y6
Hp »e o (-

U3 S e’Te <fl+<e%2) <2+<e%2)

2:4v0 N 2 3 4
Uy > @ & <fl+<e52) <73+3<e52 +2e¥ +<e52)

B1 = — /. cm // Simplify

(-1+e¥) (2+eF)

and

u
B2 = —:— /. em // Simplify
U2

2

-3 +3e¥

3 4
2 =

+2 @ +e¥

These equations define the Lognormal curve parametrically in (8, 8,) space, as ¢
increases from O to oo, as Fig. 12 illustrates. In Mathematica, one can use

ParametricPlot to derive this curve.
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B2

0.3 0.6 0.9 1.2 1.5 1.8
Fig. 12: The Lognormal curve in (8;, ;) space

This is identical to the S; curve shown in Fig. 10 (The Johnson Plot), except that the
vertical axis is not inverted here. Despite appearances, the curve in Fig. 12 is not linear;

this is easy to verify with a ruler. In the limit, as 6 » %, §; and (8, tend to O and 3,
respectively:

Limit [{Bi, B2}, & » ]

{0, 3}

so that the Normal distribution is obtained as a limit case of the Lognormal.

Given an empirical value for §8; (or 3,), we can now ‘solve’ for ¢. This is particularly
easy since 7y is not required. For instance, if ﬁl =0.829:

Solve[ B; == 0.829, §&]

— Solve::ifun : Inverse functions are being
used by Solve, so some solutions may not be found.

{ {6 -3.46241} ,
{65 -0.457213 - 0.354349 i} ,
{65 -0.457213 + 0.354349 i} ,
{65 0.457213 - 0.354349 i} ,
{65 0.457213 + 0.354349 i} ,
(6 >3.46241}) }

Since we require ¢ to be both real and positive, only the last of these solutions is feasible.
One can now find vy by comparing i, (derived above) with its empirical estimate 1, .
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5.3C Sy System (Unbounded)

Once again, let Z ~ N(0, 1) with density ¢(z):

¢ = ; domain[¢] = {z, -, ©} && {y € Reals, 6> 0};

Z—y

The Sy system is defined by the transformation Y = sinh( 5

say g(y), is:

). Hence, the density of Y,

g

Transform[y == Sinh[ Z;Y] ’ ¢>]

z-Y
domain [g] TransformExtremum [y == Sinh[ 5 ], ¢>]

efé (y+6 ArcSinh [y])? 5

V271 V1 +y2

{y, —o0, o} && {y € Reals, 6 >0}

Figure 13 indicates shapes that are typical in the Sy family.

6=1,y=0 6=1,y=1
-4 -2 2 4 -4 -2 2 4
6=3,7=0 6=3, y=1

-4 -2 2 4

Fig. 13: Typical pdf shapes in the Sy family

-4 -2 2 4

Since Y = sinh(%), and Z has density ¢(z), the »™ moment E[Y "] can be expressed:

Q := Expect[sinh[ .

r
] ’ ¢>] // EXpToTrig // FullSimplify
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This time, Mathematica cannot find the solution as a function of r, which is why we use a
delayed evaluation ( :=) instead of an immediate evaluation ( =).

The first 4 raw moments (rm) are now given by:

rm = Table[ﬁr - Q, {r, 4}]; rm // TableForm

e+ Sinh[2X])

Ley + e Cosh[%])

This can be expressed in terms of central moments (cm), as follows:3

cm = Table[ CentralToRaw([r] /. rm // FullSimplify, {r, 2, 4}]

. .

{uzeé (—l+eé2 ) (l+eez Cosh[zy]),

ma—%@zﬁ? (—l+e?lf)2 (3 Sinh[%] +eﬁl‘ (2+@671‘) Sinh[%]),

Ug = % (3+e?22‘ (eﬂs‘ Cosh[A] +4Cosh[4~] (71+6®671‘ Sinh[%]z) -
3

5
gsinh[ L] (3sinn[ L] +e# sinn[2Y]))

Then B; and 5, can be expressed as:

2
u
B1 = _} /. em // Simplify
H2
2
e (-l+e ) (3Sinh[L]+e+ (2+e+ ) Sinh[3X])
1 2 3
2 (1+e# Cosh[2X])
Ha . .
Bo= — /. cm // Simplify
u3
3ied [’eé%' Cosh[2L] + 4 Cosh[ZL] [’—l+6eé}2" Sinh[Z]°| - 8 sinh[ ] ['3sinh[%]3 e sinh[%])]

2 {’—l+eé}2')

1
1+eo? COSh[z%])

o Fitting the Sy System
To fit the Sy system, we adopt the following steps:

(i) Given values for (8, B,), solve for (9, y), noting that § > 0, and that the sign of vy is
opposite to that of 1i5.

(i) This gives us g(y | v, 0). Given the transform X = € + A Y, solve for &, and A > 0.
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@ Example 5: Fit a Johnson Density to the marks.dat Population Data Set

First, load the data set, if this has not already been done:

data = ReadList["marks.dat"]:;

The mean of this data set is:

mean = SampleMean[data] // N

58.9024
Empirical values for 1,, 15 and 1, are once again given by:

<< Statistics’

U234 = Table[ CentralMoment [data, r], {r, 2, 4}] // N

{193.875, -1125.94, 133550.}

If we were working with sample data, we would replace the CentralMoment function
with UnbiasedCentralMoment (just cut and paste). Just as PearsonPlot was used
in Example 1 to indicate the appropriate Pearson Type, we now use JohnsonPlot to
indicate which of the Johnson systems is suitable for this data set:

JohnsonPlot [Lz34 ] ;

(B - 0.173966, B, — 3.55303}

The 1, f2 Chart for the Johnson System

B>

Su

0.3 0.6 0.9 1.2 1.5 1.8

Bi

Fig. 14: The marks data lies in the Sy system

The black dot, depicting (5;, B,) for this data set, lies in the Sy system. We derived (;
and S, in terms of ¢ and y above. Thus, given values {5, — 0.173966, B, — 3.55303}, it is
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now possible to ‘solve’ for (9, y). The FindRoot function simultaneously solves the two
equations for ¢ and y:

sol = FindRoot [
{ B1 == 0.17396604431160143",
B2 == 3.5530347934625883"}, {5, 2}, {¥, 2}]

{6>3.74767, vy > 2.0016}

Note that FindRoot is a numerical technique that returns the first solution it finds, so
different starting points may yield different solutions. In evaluating the solution, it helps to
note that ¢ should be positive, while y should be opposite in sign to ;. Johnson (1949,
p- 164) and Johnson et al. (1994, p.36) provide a diagram known as an abac that provides
a rough estimate of y and ¢, given values for §; and B,. These rough estimates make an
excellent starting point for the FindRoot function. In a similar vein, see Bowman and
Shenton (1980).

The full 4-parameter (y, 9, &, A) Johnson Sy system is obtained by applying the
further transformation X = £ + A Y or equivalently ¥ = XT_f Since we are adding two new
parameters, we shall add some assumptions about them:

domain[g] = domain[g] && {& € Reals, A > 0};

Then the density of X = £ + A Y, say f(x), is:

£ Transform[x = £+y, g]
domain[f] = TransformExtremum[x == £+ Ay, g]

e+ (vroarcsimn[%5E])° 5

V2 a1+ 50

{x, —00, ©} && {y € Reals, 6>0, £ € Reals, A >0}

where y and § have already been found. Since X = £ + A Y, Var(X) = A2 Var(Y). Here,
Var(Y) was found above as u,(y, 6) (part of cm), while Var(X) is taken to be the
empirical variance 193.875 of the data set. Thus, at the fitted values, the equation
Var(X) = A2 Var(Y) becomes:

193.875==2%pu, /.cm /. sol
193.875 == 0.101355 22

Solving for A yields:

A = Solve[%, A]

{{A—> -43.7359}, {1 43.7359}}

Since we require A > 0, the second solution is the desired one. That leaves ¢ ...
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Since X = £+ AY, E[X] =&+ AE[Y]. Here, E[Y] was found above as /11 (y, (5) (part
of rm), while E[X] is taken to be the empirical mean of the data set. Thus, at the fitted
values, E[X] = £ + L E[Y] becomes:

mean == §+A [11 /. rm /. sol /.i[[2]]
58.9024 == -25.3729 + &
Solving for ¢ yields:

£ = Solve[%, £]

({E->84.2752})

The desired fitted density f(x) is thus:

£=f/.s0l /. A[2] /. E[1]

0.0341848 e—% (2.0016+3.74767 ArcSinh [0.0228645 (-84.2752+x)])?

\/l +0.000522787 (-84.2752 +x)?

which has an unbounded domain, like all S;; distributions.

As in Example 1, the mathStatica function FrequencyPlot allows one to
compare the fitted density with the empirical pdf of the data:

P2 = FrequencyPlot [data, f];

0.03 ¢
0.025
0.02 t
f 0.015
0.01 t

0.005

0 20 40 60 80
X

Fig. 15: The empirical pdf (—) and the fitted Johnson Sy pdf (- —-)

This Johnson Sy fitted density appears almost identical to the PearsonIV fit derived in
Example 1. The final diagram in Example 1 was labelled p1. If p1 is still in memory, the
command Show[pl/.Hue[__]->Hue[.4], p2] shows both plots together, but now
with the fitted Pearson curve in green rather than red, enabling a visual comparison (note
that Hue [___] contains two _ characters). The curves are so similar that only a tiny tinge
of green would be visible on screen. ]
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5.3 D Sp System (Bounded)

Once again, let Z ~ N(0O, 1) with density ¢(z):

¢ = ; domain[¢] = {z, -, } && {y € Reals, 6 >0};

The Sp (bounded) system is defined by the transformation ¥ = (1 + exp (- %) )_1. Then,
the density of Y, say g(y), is:

g = Transform[y == (1+e'z:s_r) , ¢>]
domain[g] = TransformExtremum [y == (1+e_z;_r)-1 , ¢>]
e % (y-6Log[-1+:1)" 5

V2 (y-vy?)
{y, 0, 1} && {y € Reals, 6 >0}

The full 4-parameter (y, 9, &, A) Johnson Sp system is obtained by applying the further
transformation X = £+ AY or equivalently Y = XT_f Since we are adding two new

parameters, we shall add some assumptions about them:
domain[g] = domain[g] && {£ € Reals, A > 0};
Then the density of X, say f(x), is:

£ Transform[{x == §+ Ay}, g]
domain[f] = TransformExtremum[{x==§+AYy}, g]

-+ (y-6Log[-1+2:1)°
ez %€ oA

Va2rir (x-§&) (-=x+A+§)

{x, & A+ &} & {y € Reals, 6 >0, £ €eReals, A >0}

Figure 16 shows some plots from the Sp (y, §) family.

The moments of the Sz system are extremely complicated. Johnson (1949) obtained a
solution for /11, though this does not have a closed form; nor can it be implemented
usefully in Mathematica. As such, the method of moments is not generally used for fitting
Sp systems. Instead, a method of percentile points is used, which equates percentile points
of the observed and fitted curves. This approach is not an exact methodology, and we refer
the interested reader to Johnson (1949) or Elderton and Johnson (1969, p.131).
Alternatively, one can always use the automated Pearson fitting functions as a substitute,
which is inevitably a much simpler strategy.
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I 5.4 Gram-Charlier Expansions

5.4 A Definitions and Fitting

Let ¢(z) denote a standard Normal density:

o = ; domain[¢] = {z, -0, =};

and let ¥(z) denote an arbitrary pdf that has been standardised so that its mean is 0 and
variance is 1. If ¥/(z) can be expanded as a series of derivatives of ¢(z), then

[

v = Y e -1y LEE (5:8)

J=0

This assumes the expansion is convergent — Stuart and Ord (1994, Section 6.22) provide
D @) .
¢) diJ
polynomial and has a number of interesting properties (see §5.4 B). Then (5.8) may be

written as

conditions in this regard. Further, let H;(z) = Hj(z) is known as a Hermite

YR = 6() Y. ¢ Hi). (5.9)

J=0

Then, for sufficiently large ¢, ¥(z) ~ ¢(z) Z;:o ¢j Hi(z). In Mathematica, we explicitly
model this as a function of #:

t
¥le_] := ¢ ) cl3] H[3]

3=0
This has two components: (i) H;(z) and (ii) c;.
(i) The Hermite polynomial H;(z) is defined by:#

. (-1)3
H[j_] == s 0(z,53 ¢ // Expand

Then the first few Hermite polynomials are:

Table[H; » H[j], {j, 0, 10}]
// TableForm // TraditionalForm
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Hy -1

Hy -z

H, »72-1

Hy -2 -3z

Hi->74-6722+3

Hs >0 -102 +157

Hg >0 —157* +4572 - 15

H; -7 =212 +1052° - 1052

Hg - 78 —2872° +210z* — 420 22 + 105
Hy —» 77 =367 +3782° —12607° +945 7
Hyp - 70 — 4578 +6302° — 3150 z* + 4725 22 — 945

(ii) The c; terms are formally derived in §5.4 B where it is shown that ¢; is a function of
the first j moments of ¥/(z). Since we are basing the expansion on ¢(z) (a standardised
Normal), c; is given here in terms of standardised moments (i.e. assuming
/11 =u; = 0, u, =1). The solution takes a similar functional form to H;(x), which
we can exploit in Mathematica through pattern matching:

H[]]

cli_] := /ez' o opus /. (U1 -0, pp -1}

The first few c; terms are given by:

Table[c; » c¢[j], {j, 0, 10}] // TableForm

Co — 1
(o rd 0
Cy — 0

M3
C3 = 3
1

Ca = 57 (=3 + L)

N

Cs — 120 <7lo M3 +,u5)
Cs > =55 (30 -15Ly + )

105 13 -21 ps +pig
C7 =~ 5040

-315+210 g -28 pe+Usg

Cg —

40320
-1260 p3+378 Us 36 U7 +Ug

Co = 362880

Cro — 2780-3150 iy +630 1645 o +pro

3628800
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We can now evaluate the Mathematica function [ t] for arbitrarily large #, as a function
of the first 7 (standardised) moments of ¥/(z). Here is an example with = 7:

Y[7]

1 -5 . 3 1362248 (-

m (e 2 <l+6 ( 3z+z)u3+24 (3-62z°+2%) (-3+ ) +
T%(15z710z3+z5) (=10 ps + ts) +
7;—0—(—15+4522—1524+26)(30—15u4+u6)+
(=105 2z +105z% -212° +2z27) (105u3—21u5+u7)))

5040

@ Example 6: Fit a Gram—Charlier Density to the marks . dat Population Data

First, load the data if this has not already been done:
data = ReadList ["marks.dat"];
Once again, its mean is:

mean = SampleMean[data] // N

58.9024
Evaluating the first 6 central moments (cm) yields:

<< Statistics"
cm = Table[CentralMoment [data, r] // N, {r, 1, 6}]

{0., 193.875, -1125.94,
133550., -2.68578x10°%, 1.77172x10%}

(Once again, if we were working with sample data, we would replace the
CentralMoment function with UnbiasedCentralMoment in the line above.) To
obtain standardised moments, note that uft"‘“da’dised =,/ ué/ z, Then, empirical values for
the first 6 standardised moments (sm) are:

cm[i]

sm = Table [ui > —
cm[[z]]:./z

, {i, 1, 6}]

{ua - 0., up » 1., u3 - -0.417092,
Ua - 3.55303, pus - -5.13177, g »24.3125}

Evaluating i/ [ 6] at these values yields:
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¥e

domain [ ]

Yy[6] /. sm // Simplify
{zl =09, °°};

0.000563511 e = (-5.24309 + z) (-3.14529 + z)
(8.28339 - 1.45564 z + z2) (5.43111 +4.17537 z + z?)

The above gives the density in standardised units. To find the density in original units, say
f(x), transform from Z = Xl o X = u+oZ:

egn = {x == mean + '\/cm[[2]] z};

f = Transform[eqn, ¥Ys]
domain[f] = TransformExtremum [eqn, ;]

5.55363 x 10712 e—0‘00257898 (-58.9024 +x)?

(-131.907 +x) (-102.697 + x)
(6269.27 - 138.073 x +x2) (1098.01 - 59.6673 x + x2)

{X, -0, °°}

Once again, FrequencyPlot allows one to compare the empirical pdf with the fitted
density:

p3 = FrequencyPlot [data, f];
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0.015
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X

Fig. 17: The empirical pdf (—) and the fitted Gram—Charlier pdf (- —-)

This fitted Gram—Charlier density is actually very similar to the previous Johnson and
PearsonIV results. The final Pearson fit was labelled pl. If it is still in memory, the
command Show[pl/.Hue[__]->Hue[.4], p3] shows both plots together, but now
with the fitted Pearson curve in green rather than red, enabling a visual comparison (note
that Hue [___] contains two _ characters). On screen, the difference is apparent, but very
slight. ]
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Some Advantages and Disadvantages of Gram—Charlier Expansions

By construction, Pearson densities must be unimodal; this follows from equation (5.1),
since dp/dx =0 at x = —a. Given bimodal data, Pearson densities may yield a very poor
fit. In the Johnson family, both the S; and Sy systems are unimodal. Although the Sp
system can produce bimodal densities under certain conditions, the latter is not pleasant to
work with. By contrast, Gram—Charlier expansions can produce mildly multimodal
densities. On the downside, however, Gram—Charlier expansions have an undesirable
tendency to sometimes produce small negative frequencies, particularly in the tails. In an
ideal world, these negatives frequencies could be avoided by taking higher order
expansions. This in turn requires higher order moments, which in turn have high variance
and may be unreliable unless the sample size is sufficiently large. Finally, from a practical
viewpoint, Gram—Charlier expansions are often ‘unstable’ in the sense that adding an extra
(t+1") term may actually yield a worse fit, so some care is required in choosing an
appropriate value for z.

5.4 B Hermite Polynomials; Gram-Charlier Coefficients

Let j denote the degree of the polynomial P;(z). Then, the family of polynomials P;(z),
j=0,1,2,...,is said to be orthogonal to the weight function w(z) if

f_:Pi(Z)P.i(Z)W(Z)clz = 0 fori#j. (5.10)

Hermite polynomials are orthogonal to the weight function w(z) = e, They are defined
by

Hio = CD dwe D dée) 5.11)

wz) dz &z di

and have the property that

°° 0 if i+j
[ HoH @M = { o (5.12)
To illustrate the point, compare: (Note: H[j 1 and ¢ were inputted in §5.4 A)

j H[2] H[3] ¢ dz
0

with
j H[3] H[3] ¢ dz

6
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Multiplying both sides of (5.9) by H;(z) yields

[

Hi@) 9@ = ) c; Hi(d) H;(2) ¢(2). (5.13)

j=0

Integrating both sides yields, by the orthogonal property (5.12),

[ Hvwdz = o i (5.14)

Thus,

¢ = & EHQ) (5.15)

where the expectation is carried out with respect to ¥/(z). We already know the form of the
Hermite polynomials. For instance, Hg(2) is:

H[6]

-15 + 45 z? - 15 z* + z°

It immediately follows that E[Hg(z)] = (—15 +45 /12 -15 /14 + /16) where /1[- denotes the
i™ raw moment of ¥(z). In Mathematica, this conversion from 7' to [1,- can be neatly

achieved through pattern matching:

H[6] /. z'— » [

~15 + 45 (1, - 15 {1, + 1,

Finally, since we have assumed that ¥(z) is a standardised density, replace [ with u, and
let 11, =0 and p, = 1. Then ¢ reduces to (30 — 15, + 114)/6! . These substitutions
accord with the definition of the c [ ] function in §5.4 A, and so c [6] yields:

c[6]

o5 (30 - 15 4 + )
Finally, the nomenclature ‘Gram—Charlier Expansion of Type A’ suggests other types of
expansions also exist. Indeed, just as Type A uses the standard Normal ¢(z) as a generating
function, Charlier’s ‘Type B’ uses the Poisson weight function e™* A* /x! as its generating
function, defined for x =0, 1, 2, ... . This has the potential to perform better than the
standard Normal when approximating skew densities. However, it assumes a discrete
ordinate system and perhaps for this reason is rarely used.
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I 5.5 Non-Parametric Kernel Density Estimation

Kernel density estimation does not typically belong in a chapter on Systems of
Distributions. However, just as a Pearson curve gives an impression of the distribution of
the underlying population, so too does kernel density estimation, which helps explain why
it is included here.

One of the virtues of working with families of distributions, rather than a specific
distribution, is that it reduces the chance of making the wrong parametric assumption
about the distribution’s correct form. Instead of assuming a particular functional form, one
assumes a particular family, which is more general. If our assumption is correct, then our
estimates should be efficient. However, assumptions do not always hold, and by locking
our analysis into an incorrect assumptional framework, we can end up doing rather poorly.
As such, it is usually wise to conduct a preliminary investigation of the data based upon
minimal assumptions. Smoothing methods serve to do this, as density smoothness is all
that is imposed. The so-called kernel density estimator is

n

for=-L 3 k(2=h) (5.16)

Cc
i=1

where (Yi, ..., Y,) is a random sample of size n collected on a random variable Y. The
function K is known as the kernel and is specified by the analyst; it is often chosen to be a
density function with zero mean and finite variance. Parameter ¢ >0 is known as the
bandwidth and it too is specified by the analyst; small values of ¢ produce a rough
estimate, while large values produce a very smooth estimate. For further details on kernel
density estimation, see Silverman (1986) and Simonoff (1996); Stine (1996) gives an
implementation under Mathematica Version 2.2.

@ Example 7: Non-Parametric Kernel Density Estimation

In practice, the kernel density estimate is presented in the form of a plot, and this is
exactly the output produced by the mathStatica function NPKDEPlot (non-parametric
kernel density estimator). To illustrate its use, we apply it to Parzen’s (1979) yearly
‘Snowfall in Buffalo’ data (63 data points collected from 1910 to 1972, and measured in
inches):

data = ReadList ["snowfall.dat"]:;

Two steps are required:

(i) Specify the kernel K
(ii)) Choose the bandwidth ¢

We can then use NPKDEP1ot to plot the kernel density estimate.
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Step (i): In this example, we select K to be of form

2r+1) ! r
Ku) = % (1 —-u2), l<u<l (5.17)
where r=1, 2,3, ... denotes the weight of the kernel, and !! is the double factorial

function. The r = 1 case yields the Epanechnikov kernel (ep):
3 2 .
ep = s (1 -u*); domain[ep] = {u, -1, 1};

Other common choices for K include the bi-weight kernel (r = 2), the tri-weight kernel
(r = 3), and the Gaussian kernel (2 77)_1/ 2 exp(—u? /2) which is defined everywhere on the
real line.

Step (ii): Next, we select the bandwidth ¢. This is most important, and experimenting
with different values of ¢ is advisable. A number of methods exist to automate bandwidth
choice; mathStatica implements both the Silverman (1986) approach (default) and the
more sophisticated (but much slower) Sheather and Jones (1991) method. They can be
used as stand-alone bandwidth selectors, or, better still, as a starting point for
experimentation. For the snowfall data set, the Sheather—Jones optimal bandwidth (using
the Epanechnikov kernel) is:

c = Bandwidth[data, ep, Method -» SheatherJones]

37.2621

Since K and ¢ have now been specified, we can plot the smoothed non-parametric kernel
density estimate using the NPKDEP1ot [data, K, ¢] function:

NPKDEPlot [data, ep, c]:;
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0.004
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Fig. 18: Plot of the non-parametric kernel density estimate, snowfall data (¢ = 37.26)

This estimate has produced a distinct mode for snowfall of around 80 inches. Suppose we
keep the same kernel, but choose a smaller bandwidth with ¢ = 10:
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NPKDEPlot [data, ep, 10];
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Fig. 19: Plot of the non-parametric kernel density estimate, snowfall data (¢ = 10) ﬁ

Our new estimate exposes two lesser modes on either side of the 80-inch mode, at around
53 inches and 108 inches. A comparison of the two estimates suggests that the
Sheather—Jones bandwidth is too large for this data set and has over-smoothed. This
observation is in line with Parzen (1979, p. 114) who reports that a trimodal shape for this
data is “the more likely answer”. This serves to highlight the importance of the
experimentation process. Clicking the ‘View Animation’ button in the electronic notebook
brings up an animation in which the bandwidth ¢ varies from 4 to 25 in step sizes of 1/4.
This provides a rather neat way to visualise how the shape of the estimate changes with c.

I 5.6 The Method of Moments

The method of moments is employed throughout this chapter to estimate unknown
parameters. This technique essentially equates sample moments with population moments.
The latter are generally functions of unknown parameters, and are then solved for those
parameters.

To be specific, suppose the random variable Y has density f(y; 6), where 8 is a (kx1)
vector containing all unknown parameters. Now construct the first » raw moments of Y.

That is, construct [1[. = E[Y!|fori=1, ..., rand r = k (in all our examples, it suffices to
set r = k). Generally, each moment will depend (often non-linearly) upon the parameters,
SO [1 ;= /1[. (0) Now let (Yq, ..., ¥,) denote a random sample of size n collected on Y. We

then construct the sample raw moments n; = % 27:1 Y; for each i. The method of

moments estimator, denoted by @, solves the set of k equations /1,- (@) = rh,- for 6. The
estimator is defined by equating the population moment with the sample moment, even
though population moments and sample moments are generally not equal; that is,
[ ; (0) # m;. This immediately questions the validity of the method of moments estimator.
While not pursuing the answer in any detail here, we shall merely assert that the estimator
may be justified using asymptotic arguments; for further discussion, see Mittelhammer
(1996). Asymptotic theory is considered in detail in Chapter 8.
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@ Example 8: The Bernoulli Distribution

Let Y ~ Bernoulli(f), where 8 = P(Y = 1), with pmf g(y):

g = 68 (1-6)'Y;
domain[g] = {y, 0, 1} && {0 <6 <1} && {Discrete};

The population mean of Y is easily derived as:

L, = Expect[y, g]

o

For a random sample of size n, the method of moments estimator is defined as the solution
to /11 (@) = m,, which needs no further effort in this case: 8 = m, . u

@ Example 9: The Gamma Distribution

Let Y ~ Gamma(a, b) denote the Gamma distribution with parameter 8 = (Z) and pdf f(y):

y.51—1 e—Y/b
£f= —; domain[f] = {y, 0, «} && {a >0, b>0};
I'[a] b®

To estimate 6 using the method of moments, we require the first two population raw
moments:

K, = Expect [y, £]
K, = Expect [v?, £]

ab
a(l+a)b?

Then, the method of moments estimator of parameters a and b is obtained via:

solve[{i, ==mi, [, ==m;}, {a, b}]

/2 2
m -m; +m
{{a>- L, b —2-——21}
;2 / 4
m; —mp my

Mathematica gives the solution as a replacement rule for a and . Note that the symbols
/11 and /12 are ‘reserved’ for use by mathStatica’s moment converter functions. To avoid
any confusion, it is best to Unset them:

... prior to leaving this section. ]
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Is
1.

7 Exercises

Identify where each of the following distributions will be found on a Pearson
diagram:

(i) Exponential(1)

(i) standard Logistic

(iii) Azzalini’s skew-Normal distribution with A > O (see Chapter 2, Exercise 2).

The data "stock.dat" provides monthly US stock market returns from 1834 to
1925, yielding a sample of 1104 observations. The data is the same as that used in
Pagan and Ullah (1999, Section 2.10).5

(i) Fit a Pearson density to this data.

(i) Estimate the density of stock market returns using a non-parametric kernel
density estimator, with a Gaussian kernel.

(iii) Compare the Pearson fit to the kernel density estimate.

To load the data, use: ReadList["stock.dat"].

Derive the equation describing the Type III and Type V lines in the Pearson diagram.
[Hint: use the recurrence relation (5.5) to solve the moments (/11, /12, /13, /14) as a
function of the Pearson coefficients (a, ¢¢, ¢, ¢»). Hence, find 8, and (8, in terms of
(a, co, c1, c2). Then impose the parameter assumptions that define Type III and
Type V, and find the relation between §; and 3,.] *

Exercise 3 derived the formulae describing the Type III and Type V lines,
respectively, as:

Type III: B>

2B +3

16— _ 3/2
rwev:  po- AIOBA2EA))

Use these results to show that a Gamma distribution defines the Type III line in a
Pearson diagram, and that an Inverse Gamma distribution defines the Type V line.

Let random variable X ~ Beta(a, 1) with density f(x) = ax®"!, for 0 < x < 1; this is
also known as a Power Function distribution. Show that this distribution defines the
Type I(J) line(s) on a Pearson diagram, as parameter a varies.

Let random variable X have a standard Extreme Value distribution. Find u and
{1y, 15, 1y} Fit a Pearson density to these moments. Compare the true pdf (Extreme
Value) with the Pearson fit.

Recall that the Johnson family is based on transformations of Z ~ N(0, 1). In similar
vein, a Johnson-style family can be constructed using transformations of Z ~ Logistic
(Tadikamalla and Johnson (1982)). Thus, if Z ~ Logistic, find the pdf of
Y = sinh(%), y€R, 6 >0. Plot the pdf when y =0 and 6 =1, 2 and 3. Find the

first 4 raw moments of random variable Y.

Construct a non-parametric kernel density estimator plot of the "sd.dat" data set
(which measures the diagonal length of 100 forged Swiss bank notes and 100 real
Swiss bank notes) using a Logistic kernel and the Silverman optimal bandwidth.



