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Chapter 7

Moments of Sampling Distributions

I 71 Introduction

7.1 A Overview

Let (X, ..., X,) denote a random sample of size n drawn from a population random
variable X. We can then distinguish between population moments:

/lr = E[X"] raw moment of the population

U, = E[(X—-1)"] central moment of the population, where u = E[X]

and sample moments:

n
m, = % Z X sample raw moment

n
m, = % D (X - X) sample central moment, where X = m;
where 7 is a positive integer. A statistic is a function of (X1, ..., X,,) that does not depend
on any unknown parameter. Given this terminology, this chapter addresses two topics:

(i) Unbiased estimators of population moments

Given a random sample (Xi, ..., X,), we want to find a statistic that is an unbiased
estimator of an unknown population moment. For instance, we might want to find
unbiased estimators of population raw moments /lr, or of central moments Li,, or of
cumulants x,. We might even want to find unbiased estimators of products of population
moments such as (i, (. These problems are discussed in §7.2.

(i1) Population moments of sample moments

Because (X, ..., X,,) is a collection of random variables, it follows that statistics like rh,
and m, are themselves random variables, having their own distribution, and thus their own
population moments. Thus, for instance, we may want to find the expectation of m,. Since
E[my] is just the first raw moment of m,, we can denote this problem by /11 (my).
Similarly, Var(r,rzl) is just the second central moment of my, so we can denote this problem
by u2(rhl ) This is the topic of moments of moments, and it is discussed in §7.3.
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7.1 B Power Sums and Symmetric Functions

Power sums are the lingua franca of this chapter. The »™ power sum is defined as
s = ) X0, r=1,2, ... (7.1)

The sample raw moments can easily be expressed in terms of power sums:

S 4 o 4 N
, my ==, ..., m,:#. (7.2)

,
m; = —
n n

One can also express the sample central moments in terms of power sums, and
mathStatica automates these conversions.! Here, for example, we express the 2™ sample
central moment m1, in terms of power sums:

SampleCentralToPowerSum [2]

2
s s

my - - —+ + =2
n n

Next, we express ms and my in terms of power sums:
SampleRawToPowerSum [3]
o 22
SampleCentralToPowerSum [4]

3 s} +6s{sg _4sis3 | sy

m; - —
4 n4 n3 n2 n

These functions also handle multivariate conversions. For instance, to express the

N =3 =1y .
bivariate sample central moment ms | = % Zf’;l ((X,- -X) Y;-Y) ) into power sums,

enter:

SampleCentralToPowerSum [ {3, 1}]

3 2
3 SO,l Sl,O N 3 Sl,O Sj_lj_

m3ll - -

n4 n3
3S0,181,082,0 38S1,082,1  So,153,0 L 53
n3 n? n? n

where each bivariate power sum s, , is defined by

S = XTI Y (7.3)

i=1

For a multivariate application, see Example 7. Power sums are also discussed in §7.4.
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A function f(xi, ..., x,) is said to be symmetric if it is unchanged after any
permutation of the x’s; that is, if say f(x;, x2, x3) = f(x2, x1, x3). Thus,

n
X1 +x2+--+x, = Zx,-
i=1

is a symmetric function of xi, x», ..., x,. Examples of symmetric statistics include
moments, product moments, h-statistics (h,) and k-statistics (k,). Symmetry is a most
desirable property for an estimator to have: it generally amounts to saying that an estimate
should not depend on the order in which the observations were made. The tools provided
in this chapter apply to any rational, integral, algebraic symmetric function. This includes
m,, m, k, or m, + h,, but not m, /k, nor \/m_, . Symmetric functions are also discussed in
more detail in §7.4.

I 7.2 Unbiased Estimators of Population Moments

On browsing through almost any statistics textbook, one encounters an estimator of

population variance defined by nil i (X - X )2, where X is the sample mean. It is only

natural to ponder why the denominator in this expression is n— 1 rather than n. The

answer is that n — 1 yields an unbiased estimator of the population variance, while n yields
a biased estimator. This section provides a toolset to attack such questions, not only for the
variance, but for any population moment. We introduce h-statistics which are unbiased
estimators of central population moments, and k-statistics which are unbiased estimators
of population cumulants, and then generalise these statistics to encompass products of
moments as well as multivariate moments. To do so, we couch our language in terms of
power sums (see §7.1 B), which are closely related to sample moments. Although we
assume an infinite universe, the results do extend to finite populations. For the finite
univariate case, see Stuart and Ord (1994, Section 12.20); for the finite multivariate case,
see Dwyer and Tracy (1980).

7.2 A Unbiased Estimators of Raw Moments of the Population

By the fundamental expectation result (7.15), it can be shown that sample raw moments
m, are unbiased estimators of population raw moments /Jr. That is,

4 7

E[m,] = U, (7.4)

However, products of sample raw moments are not unbiased estimators of products of
population raw moments. For instance, rhz }’;’13 is not an unbiased estimator of /12 ug
Unbiased estimators of products of raw moments are discussed in Example 6 and in §7.4 A.

7.2 B h-statistics: Unbiased Estimators of Central Moments

The h-statistic h, is an unbiased estimator of .1, defined by

Elh] = p,. (7.5)
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That is, h, is the statistic whose expectation is the central moment (. Of all unbiased
estimators of 1, the h-statistic is the only one that is symmetric. Halmos (1946) showed
that not only is h, unique, but its variance Var(h,) = E[(h, — ur)Z] is a minimum relative
to all other unbiased estimators. We express h-statistics in terms of power sums, following
Dwyer (1937) who introduced the term h-statistic. Here are the first four h-statistics:

Table [HStatistic[i], {i, 4}] // TableForm

hj_ -0
2
-s?+n s,
hy - s
2s3-3ns; s,+n? s;
hs » 5o s

-3s}+6ns? sp+(9-6n) s3+(-12+8n-4n?) s; s3+(3n-2n+n’) s,
(-3+n) (-2+n) (-1l+n) n

h4%

If we express the results in terms of sample central moments m;, they appear neater:

Table [HStatisticToSampleCentral[i], {i, 4}] // TableForm

h, -0

hy - 2%

hs > iy Py

hy = (976(I??,T:nm%(t;frf)n(?lr:;;n;) =

@ Example 1: Unbiased Estimator of the Population Variance

We wish to find an unbiased estimator of the population variance ,. It follows
immediately that an unbiased estimator of 1, is h,. Here is h, expressed in terms of
sample central moments:

HStatisticToSampleCentral [2]

nmp
hy » ——
2 -1+n
L. . —— .
which is identical to the standard textbook result 7}1' Yo (X; — X)". Given that n—fl— my is
an unbiased estimator of population variance, it follows that m, is a biased estimator of
population variance; §7.3 provides a toolset that enables one to calculate E[m;], and hence
measure the bias. ]

@ Example 2: Unbiased Estimator of ;is when n =11
If the sample size n is known, and n > r, the function HStatistic[r, n] returns h,.
When n =11, hs is:

HStatistic[5, 11]

4s? -110s3 s, +270s; s3 +850s% s3 - 990s, s3 -4180s; 54 +9196 55

hs = 55440
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@ Example 3: Working with Data

The following data is a random sample of 30 lightbulbs, recording the observed life of
each bulb in weeks:

data = {16.34, 10.76, 11.84, 13.55, 15.85, 18.20,
7.51, 10.22, 12.52, 14.68, 16.08, 19.43,
8.12, 11.20, 12.95, 14.77, 16.83, 19.80,
8.55, 11.58, 12.10, 15.02, 16.83, 16.98,
19.92, 9.47, 11.68, 13.41, 15.35, 19.11};

We wish to estimate the third central moment p; of the population. If we simply
calculated mj (a biased estimator), we would get the following estimate:

<< Statistics’

CentralMoment [data, 3]

-1.30557
By contrast, h; is an unbiased estimator. Evaluating the power sums s, = Y}", X/ yields:

HStatistic[3, 30] /. s, = Plus @@ data”

hy; - -1.44706

mathStatica’s UnbiasedCentralMoment function automates this process, making it
easier to use. That is, UnbiasedCentralMoment [data, r] estimates L, using the
unbiased estimator h,. Of course, it yields the same result:

UnbiasedCentralMoment [data, 3]

-1.44706

Chapter 5 makes frequent use of this function. |

o Polyaches (Generalised h-statistics)

The generalised h-statistic (Tracy and Gupta (1974)) is defined by
E[h{r,s,...,t]] = M Mgt My (76)

That is, hy, 5 ., is the statistic whose expectation is the product of the central moments
U, Uy -+ 1, Just as Tukey (1956) created the onomatopoeic term ‘polykay’ to denote the
generalised k-statistic (discussed below), we neologise ‘polyache’ to denote the
generalised h-statistic. Perhaps, to paraphrase Kendall, there really are limits to linguistic
miscegenation that should not be exceeded 8.2 Note that the polyache of a single term
PolyH[{r}] isidentical to HStatistic[r].
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@ Example 4: Find an Unbiased Estimator of u% Us

The solution is the polyache hy; 5 3:

PolyH[{2, 2, 3}]

h(z,z,a}%

(28] -7nsls, + (30-18n+8n?) s? s2 + (60-63n+21n?-3n’) s,
3+ (-40+24n+n?) st s; + (-120+96n-24n?> -2n®) s? s, 53 +
-20n+21n?-7n°+n*) s2s;+(80-40n-4n%+4n’) s, s?+
60-8n-12n%) s3 s, + (-120+140n-63n%+13n’) s; 55 54 +
-20n+10n% +n® -n%) s3 84 + (48-92n+30n% +2n®) s? s5 +
36 n-34n? +12n% -2n*) s, s5 +
-28n+42n?-14n°) s; s6 + (4n® -6n° +2n*) s7) /

((=6+7n) (-5+4n) (-4+n) (-3 +n) (-2+n) (-1+n) n)

(
(
(
(
(

Because h-statistics are symmetric functions, the ordering of the arguments, hy, 3, versus
hys,2,3), does not matter:

PolyH[{2, 3, 2}][[2] == PolyH[{2, 2, 3}][2]

True

When using generalised h-statistics hy, ;. 5, the weight of the statistic can easily become
quite large. Here, hy 3 has weight 7=2+2+ 3, and it contains terms such as s;.
Although hyy 5 3 is an unbiased estimator of u% U5, some care must be taken in small
samples because the variance of the estimator may be large. Intuitively, the effect of an
outlier in a small sample is accentuated by terms such as s7. In this vein, Example 11
compares the performance of hy, 5 to h3. |

7.2 C k-statistics: Unbiased Estimators of Cumulants

The k-statistic k, is an unbiased estimator of x,, defined by
E[kr] = Ky, r= L 27 (77)

That is, k, is the (unique) symmetric statistic whose expectation is the ™ cumulant x,.
From Halmos (1946), we again know that, of all unbiased estimators of x,, the k-statistic
is the only one that is symmetric, and its variance Var(k,) = E[(k, — K,)Z] 1S a minimum
relative to all other unbiased estimators. Following Fisher (1928), we define k-statistics in
terms of power sums. Here, for instance, are the first four k-statistics:

Table [KStatistic[i], {i, 4}] // TableForm

S1
ki » =
1 n
-s?+ns;

ko > o

2s3-3ns; s;+n? s;

ks > =S T

-6sf+12ns? s,+(3n-3n%) s2+(-4n-41n?) s; s3+(n?+n’) s4
(-3+n) (-2+n) (-1+n) n

k4%
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Once again, if we express these results in terms of sample central moments m;, they
appear neater:

Table [KStatisticToSampleCentral[i], {i, 4}] // TableForm

kj_%O

nm,
k2 - -1+n
ks - n n
3 (=2+n) (-1+n)
n? (3n-3n?) m2+n (n?+n’) my
(-3+n) (-2+n) (-1+n) n

k4%

Stuart and Ord (1994) provide tables of k-statistics up to » =8, though published
results do exist to » = 12. Ziaud-Din (1954) derived kg, and ko (contains errors), Ziaud-
Din (1959) derived k;; (contains errors), while Ziaud-Din and Ahmad (1960) derived k.
The KStatistic function makes it simple to derive correct solutions ‘on the fly’, and it
extends the analysis well past ki,. For instance, it takes just a few seconds to derive the
15" k-statistic on our reference personal computer:

KStatistic[15]; // Timing

{2.8 Second, Null}

But beware —the printed result will fill many pages!

o Polykays (Generalised k-statistics)

Dressel (1940) introduced the generalised k-statistic ki, , ., (now also called polykay)
defined by

Elkys, 0] = KKKy (7.8)

That is, a polykay ki .. is the statistic whose expectation is the product of the
cumulants x, x; --- x,. Here is the polykay k{, 4, in terms of power sums:

PolyK[{2, 4}]

k2,0 > (688 -18nsis, + (30-27n+15n?) s? s +
60-60n+21n®-3n%) s+ (-40+36n+4n) s’ s;+
-120+100n-24n? -4n®) sy s; 83 + (40-10n-10n° +4n’) s? +
60-20n-15n? -n’) s?2 s, + (-60+45n-10n? +n?) s, 54 +
24-42n+12n>+6n’) s1 85+ (-4n+7n?>-2n° -n*) s¢) /
((=5+n) (-4+1n) (-3+n) (-2 +n) (-1 +n) n)

(
(
(
(

Finally, note that the polykay of a single term PolyK[{r}] is identical to
KStatistic[r]; however, they use different algorithms, and the latter function is more
efficient computationally.
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@® Example 5: Find an Unbiased Estimator of x32

Solution: The required unbiased estimator is the polykay ki, »;:

PolyK[{2, 2}]

k{2,2} d

s}-2ns?s;+(3-3n+n?)s2+ (-4+4n) s;s3+ (n-n?) sy
(-3 +n) (-2+n) (-1l+n)n

For the lightbulb data set of Example 3, this yields the estimate:

PolyK[{2, 2}, 30] /. s, = Plus @@ data”

k{2,2} - 154.118
By contrast, k% is a biased estimator of k2, and yields a different estimate:

k2 = KStatistic[2, 30] /. s,  Plus @@data”
k2[2]>

ko, - 12.6501
160.024

Example 11 compares the performance of the unbiased estimator hp ,, to the biased
estimator h% (note that k{zyz] = h{zyz] ,and k; = hy). | |

® Example 6: Find an Unbiased Estimator of the Product of Raw Moments ;/13 [ 4

Polykays can be used to find unbiased estimators of quite general expressions. For

instance, to find an unbiased estimator of the product of raw moments ;/13 ;/14, we may
proceed as follows:

Step (i): Convert ;/13 /J 4 into cumulants:

p = ;’13 ;’14 /. Table [RawToCumulant [i], {i, 3, 4}] // Expand

K] +9K) Ky +21 k3 k2 + 9Ky K3 +5 K] k3 +
18 k2 Ky K3 +3 K5 K3 + 4 Ky K2 + K3 Kg + 3 Ky Ky Kg + K3 Ky

Step (ii): Find an unbiased estimator of each term in this expression. Since each term
is a product of cumulants, the unbiased estimator of each term is a polykay. The first term
could do all this manually, there is an easier way! If p(x) is a symmetric polynomial in x,
the mathStatica function ListForm[p, x] will convert p into a ‘list form’ suitable for
use by PolyK and many other functions. Note that ListForm should only be called on
polynomials that have just been expanded using Expand. The order of the terms is now
reversed:
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Pl = ListForm[p, k]

K[{3, 4}] +3x[{1, 2, 4}] +4x[{1, 3, 3}] +3x[{2, 2, 3}] +
k[{1, 1,1, 4}] +18x[{1, 1,2, 3}] +9x[{1, 2,2, 2}] +
5x[{1, 1, 1,1, 3}] +21x[{1,1,1,2,2}]+
9x[{1,1,1,1,1,2}] +x[{1,1,1,1,1,1, 1}]

Replacing each x term by PolyK yields the desired estimator:

pl /. x[%_] » PolyK[x][2] // Factor

S3 Sg4 — Sy
(-1+n)n

which is surprisingly neat. Example 15 provides a more direct way of finding unbiased
estimators of products of raw moments, but requires some knowledge of augmented
symmetrics to do so. ]

7.2 D Multivariate h- and k-statistics

The multivariate h-statistic h, ; ., is defined by
E[hr,s,...,t] = 'ur,s,...,t' (79)

That is, h, 5, ., is the statistic whose expectation is the g-variate central moment T
(see §6.2 B), where

by, = E[(Xi —EX 1Y (X2 - EIX: 1) - (X, — EIX,])] (7.10)

Some care with notation is required here. We use curly brackets {} to distinguish between
the multivariate h-statistics h, , , of this section and the univariate polyaches hy.; 4
(generalised h-statistics) discussed in §7.2 B.

The mathStatica function HStatistic [{r, s, ..., £}] yields the multivariate h-
statistic h, ; . ,. Here are two bivariate examples:
HStatistic[{1, 1}]
HStatistic[{2, 1}]

—Sp,1 S1,0 t1181,1
(-1+n)n

hl,l e

2 2
25011 sllof2nsllo S1,1 —1N1Sp,1 Sz,0 + 117 S2,1
(-2+n) (-1+n)n

h2 1 e
where each bivariate power sum s, , is defined by

n
— t
s = 2 X[ YL
i=1
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Higher variate examples soon become quite lengthy. Here is a simple trivariate example:

HStatistic[{2, 1, 1}]

hy,1,1 = (=3 S0,0,1 So,1,0 S%,o,o +11So,1,1 S%,o,o +21nN8S0,1,0 S1,0,0 S1,0,1 +
21 80,0,1 S1,0,0 S1,1,0 —2 (=3 +2mn) S1,0,1 S1,1,0 ~
2 (3 *21’1+1’12) S1,0,0 S1,1,1 +11 S0,0,1 So,1,0 S2,0,0 —
(-=3+2n) s0,1,1 S2,0,0 - (3-2 1’1+1’12) So0,1,0 S2,0,1 —
(3-2n+n%) s0,0,182,1,0+0n (3-2n+n*) s3,1,1) /
((-3+n) (-2+n) (-1+n) n)

In similar fashion, the multivariate k-statistic k, ., is defined by
E[kr,s,...,t] = Krs, ..t (711)

That is, k, .., is the statistic whose expectation is the multivariate cumulant x, ; .
Multivariate cumulants were briefly discussed in §6.2 C and §6.2 D. Here is a bivariate
result originally given by Fisher (1928):

KStatistic[{3, 1}]

ki1 —
(-6s0,187,,+6ns? ;s1,1+6n0S0,151,082,0-3 (-1l+n)nsi,182,0-
3n(l+n) s;,08z1-n(l+n)sg18350+n° (L+n)s;:1)/
((=3+n) (-2+n) (-1+n) n)

Multivariate polykays and multivariate polyaches are not currently implemented in
mathStatica.

® Example 7: American NFL Matches: Estimating the Central Moment p1, |

The following data is taken from American National Football League games in 1986; see
Csorgo and Welsh (1989). Variable X; measures the time from the start of the game until
the first points are scored by kicking the ball between the end-posts (a field goal), while
X, measures the time from the start of the game until the first points are scored by a
touchdown. Times are given in minutes and seconds. If X; < X;, the first score is a field
goal; if X; = X, the first score is a converted touchdown; if X; > X,, the first score is an
unconverted touchdown:

data = {{2.03, 3.59}, {7.47, 7.47}, {7.14, 9.41},
{31.08, 49.53}, {7.15, 7.15}, {4.13, 9.29}, {6.25, 6.25},
{10.24, 14.15}, {11.38, 17.22}, {14.35, 14.35},

{17.5, 17.5}, {9.03, 9.03}, {10.34, 14.17}, {6.51, 34.35},
{14.35, 20.34}, {4.15, 4.15}, {15.32, 15.32}, {8.59, 8.59},
{2.59, 2.59}, {1.23, 1.23}, {11.49, 11.49}, {10.51, 38.04},
{0.51, 0.51}, {7.03, 7.03}, {32.27, 42.21}, {5.47, 25.59},
{1.39, 1.39}, {2.54, 2.54}, {10.09, 10.09}, {3.53, 6.26},
{10.21, 10.21}, {5.31, 11.16}, {3.26, 3.26}, {2.35, 2.35},
{8.32, 14.34}, {13.48, 49.45}, {6.25, 15.05}, {7.01, 7.01},
{8.52, 8.52}, {0.45, 0.45}, {12.08, 12.08}, {19.39, 10.42}};
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Then, X; and X, are given by:
{X1, X2} = Transpose[data]:;

There are n = 42 pairs. An unbiased estimator of the central moment (., | is given by the h-
statistic hy ;. Using it yields the following estimate of y, ,:

HStatistic[{2, 1}, 42] /. s; ,; = X1' x23

h, 1 > 752.787
An alternative estimator of 1, ; is the sample central moment mz,,; :

m21 = SampleCentralToPowerSum|[{2, 1}]

2
280,18%,0 2S1,0S1,1 _ So,1 52,0 L S2,1
n? n? n? n

mgll e

Unfortunately, m,, ;| is a biased estimator, and it yields a different estimate here:

m21 /. {s; ,h 5 = x1*.x23, n- 42}

mz 1 — 699.87

The CentralMoment function in Mathematica’s Statistics package also implements the
biased estimator m,_; :

<< Statistics MultiDescriptiveStatistics’

CentralMoment [data, {2, 1}]

699.87

I 7.3 Moments of Moments

7.3 A Getting Started

Let (Xi, ..., X,) denote a random sample of size n drawn from the population random
variable X. Because (X, ..., X,,) are random variables, it follows that a statistic like the
sample central moment m, is itself a random variable, with its own distribution and its
own population moments. Suppose we want to find the expectation of m,. Since E[m;] is
just the first raw moment of m,, we can denote this problem by /1, (m,). Similarly, we
might want to find the population variance of m; . Since Var(rhl) is just the second central
moment of m,, we can denote this problem by u2(/nl). Or, we might want to find the
fourth cumulant of m3, which we denote by x4(m3). In each of these cases, we are finding
a population moment of a sample moment, or, for short, a moment of a moment.
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The problem of moments of moments has attracted a prolific literature containing
many beautiful formulae. Such formulae are listed over pages and pages of tables in
reference texts and journals. Sometimes these tables contain errors; sometimes one
induces errors oneself by typing them in incorrectly; sometimes the desired formula is
simply not available and deriving the solution oneself is cumbersome and tricky. Some
authors have devoted years to this task! The tools presented in this chapter change all that:
they enable one to generate any desired formula, usually in just a few seconds, without
even having to worry about typing it in incorrectly.

Although the problem of moments of moments has produced a long and complicated
literature, conceptually the problem is rather simple. Let p(s) denote any symmetric
rational polynomial expressed in terms of power sums s, (§7.1 B). Our goal is to find the
population moments of p, and to express the answer in terms of the population moments
of X. Let /lr(p), t,(p) and x,(p) denote, respectively, the r raw moment, central moment
and cumulant of p. In each case, we can present the solution in terms of raw moments
/Jl-(X) of the population of X, or central moments r;(X) of the population of X, or
cumulants x;(X) of the population of X. As such, the problem can be expressed in 9
different ways:

4,(p) £1;(X)
©,(p) in terms of i (X)
K-(p) Ki(X)

Consequently, mathStatica offers 9 functions to tackle the problem of moments of
moments, as shown in Table 1.

function description

RawMomentToRaw [r, p] /Jr(p) in terms of /:li(X)
RawMomentToCentral [r, p] /Jr(p) in terms of 1;(X)
RawMomentToCumulant [r, p] /Jr(p) in terms of x;(X)
CentralMomentToRaw [r, p] t,(p) in terms of [J,-(X)
CentralMomentToCentral [r, p] u,(p) in terms of 14;(X)
CentralMomentToCumulant [r, p] u,(p) in terms of x;(X)
CumulantMomentToRaw [r, p] x,(p) in terms of [J,-(X)
CumulantMomentToCentral [r, p] xr(p) in terms of 1;(X)
CumulantMomentToCumulant [r, p] xr(p) in terms of x;(X)

Table 1: Moments of moments functions

For instance, consider the function CentralMomentToRaw [r, p]:

* the term CentralMoment indicates that we wish to find u,(p); i.e. the rth
central moment of p;

e the term ToRaw indicates that we want the answer expressed in terms of raw
moments 1; of the population of X.
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These functions nest common operators such as:

* the expectation operator: E[p] /Jl(p) = RawMomentTo ? [1, p]

e the variance operator: Var(p) = 1,(p) = CentralMomentTo ? [2, p]

There is often more than one correct way of thinking about these problems. For example,
the expectation E [p] can be thought of as either /Jl(p3) or as /13(p). Endnote 3 provides
more detail on the ___ToCumulant functions; it should be carefully read before using
them.

@ Example 8: Checking if the Unbiased Estimators Really Are Unbiased

We are now equipped to test, for instance, whether the unbiased estimators introduced in
§7.2 really are unbiased. In §7.2 C, we obtained the polykay k{2, 4, in terms of power sums:

p = PolyK[{2, 4}]

ki2,0y > (688 -18nsi s, + (30-27n+15n?) s? s +
60-60n+21n?-3n%) s+ (-40+36n+4n?)ss;+
-120+100n-24n? -4n®) sy s; 83 + (40-10n-10n° +4n’®) s +
60-20n-15n? -n’) s2 s, + (-60+45n-10n? +n?) s, 54 +
24-42n+12n>+6n’) s1 85+ (-4n+7n?>-2n° -n*) s¢) /
((-5+n) (-4+n) (-3+n) (-2+n) (-1+n)n)

(
(
(
(

This statistic is meant to have the property that E[p] = x» k4. Since E[p] = /11 (p), we will
use the RawMomentTo? [1, p] function; moreover, since the answer is desired in terms
of cumulants, we use the suffix ToCumulant:

RawMomentToCumulant [1, p[2]]

Ko Ky
... so all is well. Similarly, we can check the h-statistics. Here is the 4™ h-statistic in terms
of power sums:

p = HStatistic[4]

-3sf{+6ns?s;+(9-6n)si+ (-12+8n-4n?)s;s3+ (3n-2n%+n’) s,

e - (3+n) (—2+10) (-1+n)n

This is meant to have the property that E[p] = 11,. And ...

RawMomentToCentral [1, p[2]]

Ha

... all is well. [ |



264 CHAPTER 7 §73A

@® Example 9: The Variance of the Sample Mean m;
.. /. s v S
Step (i): Express m; in terms of power sums: trivially, we have m; = —-.

Step (ii): Since Var(/nl) = u2(s7'), the desired solution is:

s
CentralMomentToCentral [2, ! ]
n

M2

n
where L, denotes the population variance. This is just the well-known result that the

variance of the sample mean is Var(X)/n. | |

@ Example 10: The Variance of m,

Step (i): Convert m, into power sums (§7.1 B):

m2 = SampleCentralToPowerSum [2] [2]

s? S2
n2 n

Step (ii): Since Var(my) = L, (my), the desired solution is:

CentralMomentToCentral [2, m2]

(-3+n) (-1+n) 13 . (-1+n)? 1y

n3 n3

@ Example 11: Mean Square Error of Two Estimators

Which is the better estimator of u%: (a) the square of the second h-statistic h?, or (b) the
polyache hyy 2,7

Solution: We know that the polyache hy, 2 is an unbiased estimator of 13, while h3 is a
biased estimator of 1. But bias is not everything: variance is also important. The mean
square error of an estimator is a measure that takes account of both bias and variance,

defined by MSE(@) =F [(@—0)2], where @ denotes the estimator, and € is the true
parameter value (see Chapter 9 for more detail). For this particular problem, the two
estimators are 6 = h} and 6 = h, 5

HStatistic[2][2]°

PolyH[{2, 2}]1[2]

o O
n

(7s§+ns2)2
(-1+n)?n?

st-2ns?sy,+(3-3n+n?)s2+(-4+4n)s;s3+ (n-n?) sy
(-3 +n) (-2+n) (-1l+n)n
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N 2 A ,
If we let p= (9—0) , then MSE(6) = E[p] = 11, (p), so the mean square error of each
estimator is (in terms of central moments):

_ - 2
MSE[8] = RawMomentToCentral [1, (6 -u2) ];

o - 2
MSE[8] = RawMomentToCentral [1, (6 - u2) ] ;

Now consider the ratio of the mean square errors of the two estimators. We are interested
to see whether this ratio is greater than or smaller than 1. If it is always greater than 1, then
the polykay & = hy, ,) is the strictly preferred estimator:

MSE[6]
rat = ——— // Factor

MSE [8]

((=3+n) (-2 +n)
(-630 15 +885npu5 -507n? ub +159n® 45 -31n* ud+4n° 5+

560 Ly 13 -840 n 1y 12 +520n? py k2 - 168107 p pwf +24nt py 12+
420 12 g - 690N 1 g +430n? 2 pg -1381° 1 g +
30n* pd g -4n° g -350%2 +60n 2 -42n% yd o+
120’ -3n* 4 -56 s pus +104n s ps - 720 s ps +
241° s s — 28 Ly U + 64N iy s — 4817 Ly g +
161° by e —4n* Ly g + s —3n g +3 0% g —1® g) ) /

(2 (-1+n)?n? (-66ut+51npu-17n%pud +2n° ud +
48 Ly 13 - 28npp i +4n® pp pf +36 13 pa - 36013 g +
14n? g -2n0° pd pg -6p% +5nui -n? 1d))

This expression seems too complicated to immediately say anything useful about it, so let
us consider an example. If the population is N(1, 0%) with pdf f(x):

1 x—u2
£ = —_Exp[_(—_)_.
ovVa2r

{x, -o°, =} && {u € Reals, o> 0};

I

2 o2 ]

domain[£f]
... then the first 8 central moments of the population are:

mgfc = Expect [e® ¥, £];
cm = Table[u; » D[mgfc, {t, i}]/.t->0, {i, 8}]

{1 >0, pp > 0%, u3 >0, pg >3 0%,
Us >0, g >150°%, uys -0, ug > 105 0%}

so the ratio becomes:

rr = rat /. cm // Factor

(-3+n) (-2+n)n (3+n) (1+2n)
2 (-1+n)? (3+3n-4n2? +n3)
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Figure 1 shows that this ratio is always greater than 1, irrespective of o, so the polyache is
strictly preferred, at least for this distribution.

ratio
1.5
1.4
1.3
1.2
1.1
n
100 200 300 400 500
Fig. 1: ﬁzig)) as a function of n, for the Normal distribution

We plot for n > 9 because the moments of moments functions are well-defined only for
n > w, where w is the weight of the statistic. | |

7.3 B Product Moments

Product moments (multivariate moments) were introduced in §6.2 B and §6.2 D. We are
interested here in expressions such as:

(. (Pa> P») = Elp} pj]

Uy s(Pas o) = E[(pa —Elpal)” (ps — Elps])’]
Kr,s(pa’ pb)

where each p; is a symmetric polynomial in power sums s;. All of mathStatica’s moment
of moment functions generalise to neatly handle product moments —given L, (p), simply
think of 7 and p as lists.

@ Example 12: Find the Covariance Between the Sample Moments m, and m;
Step (i): Express m, and mj3 in terms of power sums:

m2
m3

SampleCentralToPowerSum [2] [2];
SampleCentralToPowerSum [3] [2];

Step (ii): Example 13 of Chapter 6 showed that Cov(m,, m3) is just the product
moment (| (my, m3). Thus, the solution is:

CentralMomentToCentral [{1, 1}, {m2, m3}]

2 (-2+n) (-1+n) (-5+2n) uz s (-2 +n) <7l+n)2u5
n i n
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7.3 C Cumulants of k-statistics

Following the work of Fisher (1928), the cumulants of k-statistics have received great
attention, for which two reasons are proffered. First, it is often claimed that the cumulants
of the k-statistics yield much more compact formulae than other derivations. This is not
really true. Experimentation with the moment of moment functions shows that /1, (k,-) is
just as compact as x,(k;), provided both results are expressed in terms of cumulants. In
this sense, there is nothing special about cumulants of k-statistics per se; the raw moments
of the k-statistics are just as compact. Second, Fisher showed how the cumulants of the k-
statistics can be derived using a combinatoric method, in contrast to the algebraic method
du jour. While Fisher’s combinatorial approach is less burdensome algebraically, it is
tricky and finicky, which can easily lead to errors. Indeed, with mathStatica, one can
show that even after 70 years, a reference bible such as Stuart and Ord (1994) still
contains errors in its listings of cumulants of k-statistics; examples are provided below.
mathStatica uses an internal algebraic approach because (i) this is general, safe and
secure, and (ii) the burdensome algebra ceases to be a constraint when you can get a
computer to do all the dreary work for you. It is perhaps a little ironic then that modern
computing technology has conceptually taken us full circle back to the work of Pearson
(1902), Thiele (1903), and ‘Student’ (1908).

In this section, we will make use of the following k-statistics:

k2 KStatistic[2][2]:

k3 KStatistic[3][2]:

Here are the first four cumulants of k,, namely x,(k,) forr =1, 2, 3, 4:

CumulantMomentToCumulant [1, k2]

Kz

CumulantMomentToCumulant [2, k2]

2 K2 X
2, Xa

-1l+n n

CumulantMomentToCumulant [3, k2]

8 x3 +4<72+n)}<§ ) 12 Ky Ky Kg_
(-1+n)? (-1+n)?n (-1+n)n n?

CumulantMomentToCumulant [4, k2]

48 x5 , 96 (-2+n) Ky K3 ) 144 x2 x4
(-1+n)? (-1+n)®n (-1+n)?n

8(679n+4n2)}<ﬁ+32 (-2+n) k3 K5 24 K3 Ke Kg.
(-1 +n)3n2 (-1+n)?n2 (-1+n)n? nd
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Next, we derive the product cumulant x3 ; (ks, k), expressed in terms of cumulants, as
obtained by David and Kendall (1949, p.433). This takes less than 2 seconds to solve on
our reference computer:

CumulantMomentToCumulant [ {3, 1}, {k3, k2}]

1296n (-12 +5n) xfx3 324 (164 -136n+29n?) x; x3
(-2+n)? (-1 +n)° (-2+n)? (-1+n)?
648 (137 - 126 n +29n?) k2 K3 K4
(-2+n)? (-1+n)?
108 (-390 + 543 n-257 n? + 41 n?) k3 k3
(-2+n)?2 (-1+n)°n
108 (110 - 122 n+33 n?) x3 ks
(-2+n)? (-1 +n)°
54 (-564 +842n-421n? +71n?) x% ks
(-2+m)? (-1+n)®n
54 (316 -340n+ 93 n?) Ky K4 Ks
(-2+n) (-1+n)°’n
54 (178 -220n + 63 n?) xy K3 Kg
(-2+n) (-1+n)°’n
9 (103 -134n+49n?) x5 K¢
(-1+n)3n2

54 (-23+121n) x§ x; 27 (22-31n+111n?) Ky Xy

+

+

(-2+mn) (-1+n)%n (-1+mn)°n?
9 <*26 + 17 n) K3 Kg 45 Ky Kg K11
+ +
(—l+n)2n2 (-1 +n) n? n3

@ Example 13: Find the Correlation Coefficient Between k, and k3
Solution: If pyy denotes the correlation coefficient between random variables X and Y,

then by definition:

E[(X-E[X]) (Y=E[Y])]
v Var(X) Var(Y)

E[(ko—x2) (ks —x3)]
\/Uz (k) Ho (k3)

Pxy =

sothat py,k, =

The solution (expressed here in terms of cumulants) is thus:

RawMomentToCumulant [1, (k2 -x;) (k3 -k3)]

\/ CentralMomentToCumulant [2, k2] CentralMomentToCumulant [2, k3]

6 K3 K X
bxa K3 | Ks
-1l+n n

2 K2 X 6n K3 9 x3 9 Ky K K
RS Ka_ 2 5 2 Kq Ke_
\/< Tt ) (e ot e )
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Since E [(X —E[X]) (Y —-E[Y ])] = (X, Y), we could alternatively derive the numerator
as:

CentralMomentToCumulant [ {1, 1}, {k2, k3}]

6 Ky K K
2K3 | K5

-1l+n n

which gives the same answer. ]

Product Cumulants

These tools can be used to check the tables of product cumulants provided in texts such as
Stuart and Ord (1994), which in turn are based on Fisher’s (1928) results (with
corrections). We find full agreement, except for x; (ks, kp) (Stuart and Ord, equation
12.70) which we correctly obtain as:

CumulantMomentToCumulant [ {2, 2}, {k3, k2}]

288 n k3 , 288 (-23+10n) K2 K2
(-2+mn) (-1+n)? (-2 +n) (-1+n)?
360 (-7 +4n) K3 Ky , 36 (160 - 155n +38n?) x2 x4 .
(-2+n) (-1+n)° (-2+n) (-1+n)’n

36 (93 -103 n+29n?) xy k3 N
(-2+n) (-1+n)°’n

24 (202 -246n+71n?) K3 K3 Ks . 2 (113 -154n+ 59 n?) xi N

(-2+n) (-1+n)’n (-1+n)3n?
6 (-131 +67n) x5 K¢ , 3(117-166n+61n’) x4 K¢
(-2+n) (-1+n)?n (-1+n)3n2
6 <*27+l7 l’l) K3 K7 37 Ky Kg K10
+
(-1+n)?n? (-1+n)n? n?

By contrast, Fisher (1928) and Stuart and Ord (1994) give the coefficient of the x3 x,

_72 (-23+14n) . 2 .2 . 144 (-44+19n) .
o 1) for the x3 x5 term: ISR There is also a small

typographic error in Stuart and Ord equation 12.66, x; 1 (ks, k), though this is correctly
stated in Fisher (1928).

term as

@ Example 14: Show That Fisher’s (1928) Solution for x; , (ks, k) Is Incorrect

If we can show that Fisher’s solution is wrong for one distribution, it must be wrong
generally. In this vein, let X ~ Bernoulli(%), so that X’ = X for any integer i. Hence,
s| =5, =s3 = ¥ ~ Binomial(n, ) (¢f. Example 21 of Chapter 4). Recall that the k-
statistics k, and k3 were defined above in terms of power sums s;. We can now replace all
power sums s; in k, and k3 with the random variable Y:
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K, = k2 /oSi_ 2> Y
ny -y’
(-1+n)n

K; = k3 /oSi_ 2> Y

ny-3ny?+2y°
(-2+n) (-1+n)n

where random variable Y ~ Binomial(n, %), with pmf g(y):

1
g Binomial[n, y]p¥ (1-P)* ¥ /.p> ?;

domain[g] = {y, 0, n} && {n > 0, n € Integers} && {Discrete};

We now want to calculate the product cumulant x;,(Ks, K;) directly, when
Y ~ Binomial(n, %). The product cumulant x, , can be expressed in terms of product raw
moments as follows:

k22 = CumulantToRaw|[ {2, 2}]

, ,2 , ,2 , , , ,2
Koo > =6 g 1 Hy g+ 2 Hg o My g +8 Ly 1 Hy g Hy,1 —2Hy 1~
’ ’ ;2 ’ ’ ’ ’ ’ ’
2 Uy ,9 My, 2 How Hpo —Ho,2 Moo =2 Ho,1 Ha 1 + Hp o

as given in Cook (1951). Here, each term /Jm denotes /lrys(K_g, K>) = E[K; K3 ], and
hence can be evaluated with the Expect function. In the next input, we calculate each of
the expectations that we require:

Q = x22[[2] /. 41, ,, = Expect[K; K5, g] // Simplify

496 - 405n + 124 n% - 18 n?® +n*
32 (-2+mn) (-1+n)3n3

Hence, () is the value of x5 »(ks, ky) when X ~ Bernoulli(%).

Fisher (1928) obtains, for any distribution whose moments exist, that x, »(ks, ky) is:

] 288 nx3 144 (-44 +19n) x32 3
Fisher = + +

(-2+mn) (-1+n)°® (-2+mn) (-1+n)°®
72 (-23+14n) x x4, 36 (160-155n+38n?) x} x,
+ +

(-2+mn) (-1+n)3 (-2+mn) (-1+n)°n
36 (93-103n+29n?%) x; k2 24 (202-246n+71n?) x; K3 Ks
+ +

(-2+n) (-1+n)°n (-2+mn) (-1+n)°n

2 (113 - 154 n + 59 n?) x2 .8 (-131+ 67 n) 52 x¢ .

(-1+n)3n2 (-2+n) (-1+n)?n
3 (117-166n+61n?) x4 K¢ 6 (-27 + 17 n) K3 Kq 37 x5 Kg K10
+ + +

(-1+mn)> n2 (-1+n)%n2 (-1 +n) n? n3

H
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Now, when X ~ Bernoulli(%), with pmf f(x):

domain[f] = {x, 0, 1} && {Discrete};

Hh
I
N| R
e

... the cumulant generating function is:
cgf = Log[Expect[e®**, £]]

Log[%l (l+<et)]

and so the first 10 cumulants are:

r}] /. t-» 0, {r, 10}]

klis = Table[x, » D[cgf, {t,
{K ei K ei K3 >0, K %,i ks - 0
1 2 ’ 2 4 ’ 3 ’ 4 3 ’ 5 7
1 7 3
K6%Z’K7%O’K8%7EIK9%O’KIO%T}

... so Fisher’s solution becomes:

Fsol = Fisher /. xlis // Simplify

496 - 405n+ 124 n%-72n° +28n*
32 (-2+n) (-1+n)°n3

which is not equal to Q derived above. Hence, Fisher’s (1928) solution must be incorrect.

How does mathStatica fare? When X ~ Bernoulli(%), our solution is:

CumulantMomentToCumulant [ {2, 2}, {k3, k2}]
/. xlis // Simplify

496 - 405n + 124 n% - 18 n?® +n*
32 (-2+mn) (-1+n)3n3

which is identical to ), as we would expect. How big is the difference between the two
solutions? The following output shows that, when X ~ Bernoulli(%), Fisher’s solution is

at least 28 times too large, and as much as 188 times too large:

1000000000} // N

Fsol
20, 50, 100, 500,

Q
{188.172, 68.0391, 38.7601, 32.8029, 28.882, 28.}

/. n-> {11,

This comparison is only valid for n greater than the weight w of x, ,(ks, k;), where
| |

w = 10 here. Weights are defined in the next section.
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I 7.4 Augmented Symmetrics and Power Sums

7.4 A Definitions and a Fundamental Expectation Result

This section does not strive to solve new problems; instead, it describes the building
blocks upon which unbiased estimators and moments of moments are built. Primarily, it
deals with converting expressions such as the three-part sum }; £k Xi Xf X7 into one-part
sums such as Y. | X;. The former are called augmented symmetrics functions, while the
latter are one-part symmetrics, more commonly known as power sums. Formally, as per
§7.1 B, the r™® power sum is defined as

s = ) X!, r=1,2, ... (7.12)

Further, let A, .. .., denote an augmented symmetric function of the variates. For
example,

Asao = ), X XXX, (7.13)

i#jFk+m

where each index in the four-part sum ranges from 1 to n. For any list of positive integers
t, the weight of A, is w = XL t, while the order, or number of parts, is the dimension of ¢,
which we denote by p. For instance, Az 2,2, 1) has weight 8, and order 4. For convenience,
‘condensed form’ notation, respectively. Many authors would denote A 5> 14, by the
expression [3 22 147; unfortunately, this notation is ill-suited to Mathematica where
[ ] notation is already ‘taken’.

This section provides tools that enable one to:

(i) express an augmented symmetric function in terms of power sums; that is, find
function f such that A, = f(sy, sz, ..., s,,)—each term in f will be isobaric (have the
same weight w);

(ii) express products of power sums (e.g. s1 52 s3) in terms of augmented symmetric
functions.

Past attempts: Considerable effort has gone into deriving tables to convert between
symmetric functions and power sums. This includes the work of O’Toole (1931, weight 6,
contains errors), Dwyer (1938, weight 6), Sukhatme (1938, weight 8), and Kerawala and
Hanafi (1941, 1942, 1948) for w =9 through 12 (errors). David and Kendall (1949)
independently derived a particularly neat set of tables up to weight 12, though this set is
also not free of error, though a later version, David ef al. (1966, weight 12) appears to be
correct. With mathStatica, we can extend the analysis far beyond weight 12, and derive
correct solutions of even weight 20 in just a few seconds.
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o Augmented Symmetrics to Power Sums
The mathStatica function AugToPowerSum converts a given augmented symmetric
function into power sums. Here we find [32%] = A3,y in terms of power sums:
AugToPowerSum [ {3, 2, 2, 2}]
A(3,2,2,2} %S% S3 *352 S3 Sa *35% Ss +3S4 Ss +2S3 Se +652 S7 *659

The integers in AugToPowerSum|[ {3, 2, 2, 2} ] do not need to be any particular order.
In fact, one can even use ‘condensed-form’ notation:4

AugToPowerSum [ {3, 23}]

A(3,2,2,2}%S% S3*3Sg S3 S4*3S% Ss +3S4 Ss +2S3 Ss+652 S7*6Sg

Standard tables also list the related monomial symmetric functions, though these are
generally less useful than the augmented symmetrics. Using condensed form notation, the
monomial symmetric M« 5 o« .y is defined by:

_ A{aq,bﬁ,c*,...]

al B ) ... (7.14)

M{aq,bﬁ,c*,...]

mathStatica provides a function to express monomial symmetric functions in terms of
power sums. Here is M3 »3,:

MonomialToPowerSum[ {3, 23}]

S4 S S3 S
45+36

2
S5 Ss + 3 3

+ S2 S7 — S9

1
525354*7

1 1
M(3,2,2,2) 3 s3 s3 - 5

o Power Sums to Augmented Symmetrics

The mathStatica function PowerSumToAug converts products of power sums into
augmented symmetric functions. For instance, to find s; s3 in terms of Ay:

PowerSumToAug [ {1, 2, 2, 2}]

3
S1 83 2A7; +3 A3y +3A55,0 vA1 3 A53,2,2 +3A, 2,1 YAR,2,2,1)

Here is an example with weight 20 and order 20. It takes less than a second to find the
solution, but many pages to display the result:

PowerSumToAug [{12°}]; // Timing

{0.93 Second, Null}
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Like most other converter functions, these functions also allow one to specify ones own
notation. Here, we keep ‘s’ to denote power sums, but change the Ay, terms to Ay:

PowerSumToAug [ {3, 2, 3}, s, A]

2
Sy S3 %)\{8} + 2 )\{5]3} +)\{6,2} +)\{3I3I2}

A Fundamental Expectation Result

A fundamental expectation result (Stuart and Ord (1994), Section (12.5)) is that

’

ElAupe. gl = [yl x n@m=1)--(n-p+1) (7.15)

where, given A;, the symbol p denotes the number of elements in the list 7. This result is

important because it lies at the very heart of both the unbiased estimation of population

moments, and the moments of moments literature (see §7.4 B and C below). As a simple

illustration, suppose we want to prove that m, is an unbiased estimator of /lr (7.4): to do
s _ Ap

so, we first express m, = - = — SO0 that we have an expression in Ay, and then apply

(7.15) to yield E[m, | = + E[Ajy] = L.
We can implement (7.15) in Mathematica as follows:

ExpectAug[t_] :=
Length [t] -1
(Thread[ﬁt] /. List » Times) ]._.[ (n-1)

i=0

Thus, the expectation of say Ay, » 3) is given by:

ExpectAug[{2, 2, 3}]

2,
(=2 +n) (-1+n)npu, Uy

@ Example 15: An Unbiased Estimator of ug I 4

In Example 6, we found an unbiased estimator of (1, ;’44 by converting to cumulants, and
then finding an unbiased estimator for each cumulant by using polykays. It is much easier

to apply the expectation theorem (7.15) directly, from which it follows immediately that

A4
n(n-1)°

an unbiased estimator of /13 L 418 where A3 4) is given by:

AugToPowerSum [ {3, 4}]

A{3,4} —> S3 S4 — Sy

as we found in Example 6. |
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7.4 B Application 1: Understanding Unbiased Estimation
Augmented Symmetrics - Power Sums

Let us suppose that we wish to find an unbiased estimator of x, x| x; from first
principles. Now, x, k1 x; can be written in terms of raw moments:

zl = Times @@
Map [CumulantToRaw [#] [2] &, {2, 1, 1}] // Expand

4 /2,
“Hy t Mg Hp

We have just found the coefficients of the polykay ki» 1 1) in terms of so-called Wishart
Tables (see Table 1 of Wishart (1952) or Appendix 11 of Stuart and Ord (1994)). To
obtain the inverse relation in such tables, use RawToCumulant instead of
CumulantToRaw. In ListForm notation (noting that the order of the terms is now
reversed), we have:

z2 = ListForm[zl, u]
A0{1, 1, 2}) -40{1, 1, 1, 1}]
By the fundamental expectation result (7.15), an unbiased estimator of z1 (or z2) is:

, AugToP S 2
z3 =22 /. u[x_]» ugToPowerSum [x] [2] // Factor

H::x(:gth[x]—l (n _ i)

-sf+3s?s,+ns?s; -ns?-2s;83-2n85; 83 +208,
(-3 +n) (-2+n) (-1+n)n

This result is identical to PolyK[{2,1, 1} ], other than the ordering of the terms.

7.4 C Application 2: Understanding Moments of Moments
Products of Power Sums —» Augmented Symmetrics

We wish to find an exact method for finding moments of sampling distributions in terms
of population moments, which is what the moments of moments functions do, but now
from first principles. Equation (7.15) enables one to find the expectation of a moment, by
implementing the following three steps:

(i) convert that moment into power sums,
(i) convert the power sums into augmented symmetrics, and
(iii) then apply the fundamental expectation result (7.15) using ExpectAug.

For example, to find E[m,], we first convert m, into power sums s;:

m4 = SampleCentralToPowerSum [4] [2]

~3sf +6s{sg _ 4s; ss . Su
n4 n3 n2 n
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Then, after converting into ListForm, convert into augmented symmetrics:

z1l = ListForm[m4, s] /. s[x_] :» PowerSumToAug [x] [2]

Ay 4 (A +A3y) N 6 (Apgy +Ap,2) +2A73,1) +Ap,1,1y)
n n? n3
3 (Apy +3A0,2y +4A53,1, +6A0,1,1) +A,1,1,13)
né

We can now apply the fundamental expectation result (7.15):
z2 = z1 /. A, > ExpectAug[t] // Simplify
, 4 72
- ((—l+n) (3 (6-5n+n2) (4, -6 (6 -5n+n?) /1] f1, +

;2 ;o ,
(9-6n) [, +4 (3—3n+n2)ulu3—(3—3n+n2)u4))

This output is identical to that given by RawMomentToRaw/[1, m4], except that the
latter does a better job of ordering the terms of the resulting polynomial.

I 7.5 Exercises

1.  Which of the following are rational, integral, algebraic symmetric functions?

n n 2 n n
0 Y X (i) [ ) X,-] LY -%" @ [ Y%
i=1 i=1 i=1 i=1

(v) hy m3 (vi) hy /m3 (vii) hy +m3 (viii) \/ hy mj}

2.  Express each of the following in terms of power sums:

n n 2 n
. . =3
0 XX (G [Z X,-] (iii) my = - 3 (X; - X)
i=1 i=1 i=1

. " =3 — 2

(i)kamd  (v) (h3=5) vi) 2 (X =X) (Yi-Y))

i=1

3. Find an unbiased estimator of: (i) py (i) £, (i) k53 (iv) the sixth

factorial moment. Verify that each solution is, in fact, an unbiased estimator.

n n 2
4. Solve the following: (i) Var(ms) (i) E[ )] X?] (iii) E{( D X,-] }
i=1 i=1
(iv) xa(kp) (V) U3z ,(hy, h3).
5. Let(Xi, ..., X,) denote a random sample of size n drawn from X ~ Lognormal(n, o).

n
LetY = Z X ;. Find the first 4 raw moments of Y.
i=1

n
6. Find the covariance between 1 Z X, -X )2 and 1
n—1 P n

X;. What can be said
=1

1
about the covariance if the population is symmetric?



