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Chapter 8
Asymptotic Theory

I 8.1 Introduction

Asymptotic theory is often used to justify the selection of particular estimators. Indeed, it
is commonplace in modern statistical practice to base inference upon a suitable asymptotic
theory. Desirable asymptotic properties — consistency and limiting Normality— can
sometimes be ascribed to an estimator, even when there is relatively little known, or
assumed known, about the population in question. In this chapter, we focus on both of
these properties in the context of the sample mean,

and the sample sum,

Sy = Z X;

where symbol n denotes the sample size. We have especially attached n as a subscript to
emphasise that X,, and S, are random variables that depend on n. In subsequent chapters,
we shall examine the asymptotic properties of estimators with more complicated structures
than X, and S,. Our discussion of asymptotic theory centres on asking: What happens to
an estimator (such as the sample mean) as n becomes large (in fact, as n — %)? Thus, our
presentation of asymptotic theory can be viewed as a theory relevant to increasing sample
sizes. Of course, we require that the random variables used to form X, and S, must exist
at each and every value of n. Accordingly, for an asymptotic theory to make sense, infinite-
length sequences of random variables must be allowed to exist. For example, for X, and
S,, the sequence of underlying random variables would be

X1y Xas veos Xiy Xig1s -2 0) = (X0},
Throughout this chapter, apart from one or two exceptions, we shall work with examples
dealing with the simplest of cases; namely, when all variables in the sequence are
independent and identically distributed. Our treatment is therefore pitched at an
elementary level.
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The asymptotic properties of consistency and asymptotic normality are due to,
respectively, the concepts of convergence in probability (§8.5) and convergence in
distribution (§8.2). Moreover, these properties can often be established in a variety of
situations through application of two fundamental theorems of asymptotic theory:
Khinchine’s Weak Law of Large Numbers and Lindeberg—Lévy’s Central Limit Theorem.

The Mathematica tools needed in a chapter on asymptotic theory depend, not
surprisingly, in large part on the built-in Limit function; however, we will also use the
add-on package Calculus Limit'. The add-on removes and replaces the built-in
Limit function with an alternate algorithm for computing limits. As its development
ceased a few years ago, we would ideally prefer to ignore this package altogether and use
only the built-in Limit function, for the latter is subject to ongoing research and
development.! Unfortunately, the world is not ideal! The built-in Limit function in
Version 4 of Mathematica is unable to perform some limits that are commonplace in
statistics, whereas if Calculus Limit" is implemented, a number of these limits can
be computed correctly. The solution that we adopt is to load and unload the add-on as
needed. To illustrate our approach, consider the following limit (see Example 2) which
cannot be solved by built-in Limit (try it and see!):

lim, - Binomialln, ] (£)" (1 - £)

With Calculus Limit " loaded, a solution to the limit is reported. Enter the following:

<< Calculus Limit"
6 X 6 n-x

Limit [Binomial[n, x] (—) (1 - —) ’ n—»oo];
n n

Unprotect [Limit]; Clear[Limit];

The limit is computed correctly —we suppress the output here — what is important to see
is the procedure for loading and unloading the Calculus Limit" add-on.

Asymptotic theory is so widespread in its application that there is already an
extensive field of literature in probability and statistics that contributes to its development.
Accordingly, we shall cite only a select collection of works that we have found to be of
particular use in preparing this chapter: Amemiya (1985), Bhattacharya and Rao (1976),
Billingsley (1995), Chow and Teicher (1978), Hogg and Craig (1995), McCabe and
Tremayne (1993) and Mittelhammer (1996).

I 8.2 Convergence in Distribution

The cumulative distribution function (cdf) has three attractive properties associated with
it, namely (i) all random variables possess a cdf, (ii) the cdf has a range that is bounded
within the closed unit interval [0,1], and (iii) the cdf is monotonic increasing. So when
studying the behaviour of a sequence of random variables, we may, possibly just as easily,



§8.2 ASYMPTOTIC THEORY 279

consider the behaviour of the infinite sequence of associated cdf’s. This leads to the
concept of convergence in distribution, a definition of which follows.

Let the random variable X, have cdf F, at each value of n =1, 2, .... Also, let the
random variable X have cdf F, where X and F do not depend upon n. If it can be shown
that

lim 0 F,(x) = F(x) 8.1

for all points x at which F(x) is continuous, then X, is said to converge in distribution to
X.2 A common notation to denote convergence in distribution is

X, -5 X. (8.2)

F is termed the limit distribution of X,,.

@ Example 1: The Limit Distribution of a Sample Mean

In this example, the limiting distribution of the sample mean is derived, assuming that the
population from which random samples are drawn is N(0, 1). For a random sample of size
n, the sample mean X, ~ N(O, %) (established in Example 24 of Chapter 4). Therefore,

the pdf and support of X, are:
e'ziT
f= ——; domain[f] = (%, -oo, o} && {n>0};

V2rxn/n

while the cdf (evaluated at a point x) is:

F, = Prob[x, f]

\/HX}
\2

1
? 1+Erf[

The limiting behaviour of the cdf depends on the sign of x. Here, we evaluate
lim,,_,. F,(x) when x is negative (say x = —1), zero, and positive (say x = 1):

<< Calculus Limit"
Limit[F, /. x> {-1, 0, 1}, n > ]

Unprotect [Limit]; Clear[Limit];

The left-hand side of (8.1) is, in this case, a step function with a discontinuity at the origin,
as the left panel of Fig. 1 shows.
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Limit cdf of X, cdf of X
| Q—— | —
050 0.5
D by D X

Fig. 1: Limit cdf of X,,, and cdf of X

Now consider a random variable X whose cdf evaluated at a point x is given by

0 ifx<O
Fx) = { 1 ifx=0
Comparing the graph of the cdf of X (given in the right panel of Fig. 1) to the graph of the
limit of the cdf of X,, we see that both are identical at all points apart from when x = 0.
However, because both graphs are discontinuous at x = 0, it follows that definition (8.1)
holds, and so

— d
X,— X.

F is the limiting distribution function of X,. Now, focusing upon the random variable X
and its cdf F, notice that F assigns all probability to a single point at the origin. Since X
takes only one value, 0, with probability one, then X is a degenerate random variable, and
F is termed a degenerate distribution. This is one instance where the limiting distribution
provides information about the probability space of the underlying random variable. |

@ Example 2: The Poisson as the Limit Distribution of a Binomial

It is sometimes possible to show convergence in distribution by deriving the limiting
behaviour of functions other than the cdf, such as the pdf/pmf, the mgf, or the cf. This
means that convergence in distribution becomes an issue of convergence of an infinite-
length sequence of pdf/pmf, mgf, or cf.

In this example, convergence in distribution is illustrated by deriving the limit of a
sequence of pmf. Recall that the Binomial(n, p) distribution has mean n p. Suppose that
X, ~ Binomial(n, 6/n) (then 0 < 6 < n); furthermore, assume that 6 remains finite as n
increases. To interpret the assumption on 6, note that E[X,] =n6/n = 6; thus, for every
sample size n, the mean remains fixed and finite at the value of 6. Let f denote the pmf of
X,. Then:

6 X 6 n-x
Binomial [n, x] (—) (1 - —) ;
n n

£

domain[f] =
{%, 0, n} && {0<O6<n, n>0, n€ Integers} && {Discrete};
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<< Calculus Limit"
Limit[£, n - o]
Unprotect [Limit]; Clear[Limit];

e e¥
T'[l+x]

Because I'[1+ x] = x! for integer x =0, this expression is equivalent to the pmf of a
variable which is Poisson distributed with parameter . Therefore, under our assumptions,

X, —d> X ~ Poisson(6).
The limiting distribution of the Binomial random variable X,, is thus Poisson(6). ﬁ

@ Example 3: The Normal as the Limit Distribution of a Binomial

In the previous example, both the limit distribution and the random variables in the
sequence were defined over a discrete sample space. However, this equivalence need not
always occur: the limit distribution of a discrete variable may be continuous, or a
continuous random variable may have a discrete limit distribution, as seen in Example 1
(albeit that it was a degenerate limit distribution).

In this example, convergence in distribution is illustrated by deriving the limit of a
sequence of moment generating functions (mgf). Suppose that X,, ~ Binomial(n, 6), where
0 <6< 1. Unlike the previous example where the probability of a ‘success’ diminished
with n, in this example the probability stays fixed at 6 for all n. Let f once again denote
the pmf of X, :

f = Binomial[n, x] 6* (1 -6)"7%;
domain[f] =
{%, 0, n}&& {0<O6<1, n>0, n€ Integers} && {Discrete};

Then, the mgf of X, is derived as:
mgf, = Expect[e®*, f]
(1+ (-1+e%) 0)"

Now consider the standardised random variable Y, defined as

X, —EIX,0  _X,-n6

Yo = VVvarx,)  Vned-e) °

Y, necessarily has a mean of 0 and a variance of 1. The mgf of Y, can be obtained using
the MGF Theorem (§2.4 D), setting a and b in that theorem equal to:
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-neoé 1
a=- ——————————; b:——;

vne (1-0) ’ vne (1-0)
to find:

mgf, = e*® (mgf, /.t >bt)

nte n

e it (14 (-1+evmiar ) o)
Executing built-in Limit, we find the limit mgf of the infinite sequence of mgf’s equal to:
Limit [mgf,, n - o]
e
As this last expression is equivalent to the mgf of a N(0, 1) variable, it follows that

Y, -5 Z~ N, 1),

Thus, the limiting distribution of a standardised Binomial random variable is the standard
Normal distribution. [ |

I 8.3 Asymptotic Distribution

Suppose, for example, that we have established the following limiting distribution for a
random variable X, :

X, -5 Z~ N, 1), (8.3)

Let n. denote a fixed and finite sample size; for example, n, might correspond to the
sample size of the data set with which we are working. In the absence of any knowledge
about the exact distribution of X,,, it makes sense to use the limiting distribution of X, as
an approximation to the distribution of X, , for if n, is sufficiently large, the discrepancy
between the exact distribution and the posited approximation must be small due to (8.3).
This approximation is referred to as the asymptotic distribution. A commonly used
notation for the asymptotic distribution is

X, < N, 1) (8.4)

which reads literally as ‘the asymptotic distribution of X, is N(0, 1)’, or ‘the approximate
distribution of X,,_ is N(0, 1)’.

Of course, the variable that is of interest to us need not necessarily be X, . However,
if we know the relationship between X, and the variable of interest, Y, say, it is often
possible to derive the asymptotic distribution for the latter. For example, if
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Y,, =u+0X, ,where u €R and o € R,, then the asymptotic distribution of ¥, may be
obtained directly from (8.4) using the properties of the Normal distribution:

Y, < N(u, o).

As a second example, suppose that W, is related to X, by the transformation
W, = X,Z,*. Once again, the asymptotic distribution of W, may be deduced by using the
properties of the Normal distribution:

W, < Chi-squared(1).

Typically, the distinction between arbitrary n and a specific value n, is made implicit by
dropping the * subscript. We too shall adopt this convention from now on.

@ Example 4: The Asymptotic Distribution of a Method of Moments Estimator

Let X ~ Chi-squared(f), where 8 € R, is unknown. Let (X;, X3, ..., X;,) denote a random
sample of size n drawn on X. The method of moments (§5.6) estimator of 6 is the sample
mean X,,. Further, let Z, be related to X, by the following location shift and scale change,

X, -6

Z, = Sn—2
V26/n

(8.5)

d
Since it can be shown that Z, — Z ~ N(0, 1), it follows that the asymptotic distribution of
the estimator is

X, ~ N(G, 20). ™

n

van Beek Bound

One way to assess the accuracy of the asymptotic distribution is to calculate an upper
bound on the approximation error of its cdf. Such a bound has been derived by van Beek,3
and generally applies when the limiting distribution is the standard Normal. The relevant
result is typically expressed in the form of an inequality.

Let (Wi, ..., W,) be a set of n independent variables, each with zero mean and finite
third absolute moment. Define

p = 13 EW?)
i=1
o= RE Wl (8.6)
i=1
B = — 0.7975 ut 15>

Vn
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and let

W

w, = —W__
Vi /n

where W denotes the sample mean % 2., W;. Then van Beek’s inequality holds for all w,
in the support of the variable W, , namely,

| Fu(w.) = B(w,)

<B (8.7)

where F, (w,) is the cdf of W, evaluated at w,, and ®(w,) is the cdf of a N(0, 1) variable
evaluated at the same point.4 Some features of this result that are worth noting are: (i) the
variables (Wi, ..., W,) need not be identically distributed, nor does their distribution need
to be specified; (ii) van Beek’s bound B decreases as the sample size increases, eventually
reaching zero in the limit; and (iii) if (W, ..., W,,) are identical in distribution to a random
variable W, then u, = E[W?] = Var(W) and w=E [ | w |3] These simplifications will be
useful in the next example.

@ Example 5: van Beek’s Bound for the Method of Moments Estimator

We shall derive van Beek’s bound B on the error induced by using the N(0, 1) distribution
to approximate the distribution of Z,, where Z, is the scaled method of moments estimator
given in (8.5) in Example 4. Recall that Z, = (X,, — 6) / V26/n, where X, is the sample
mean of n independent and identically distributed Chi-squared(f) random variables, each
with pdf f(x):

x9/2—1 e—x/Z
f=_— — ,; domain[f] = {x, 0, =} && {6 > 0};
r[e/2] 29/2

Note that van Beek’s bound assumes a zero mean, whereas X has mean 6. To resolve this
difference, we shall work about the mean and take W =X-6. We now derive
w2 = E[W?]:

w= x-6; U, = Expect[w?, f]
26

3 3
To derive uj = E [ | w | ] =FE [ | X - 0| ], note that Mathematica has difficulty integrating
expressions with absolute values. Fortunately, mathStatica allows us to replace | w | with
an If[] statement. The calculation takes about 30 seconds on our reference machine:>

ui = Expect [ If[x <6, -w, w]>, £]
e 78+;@ ((2e) 26 % (6+0)
T[4+ 5]

(2 +0+e%? QEprntegralE[f2 - %, g‘} ))]
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Since u, =26, we have

Z, = X, =6 _ W =W,
V20/n  Vu/n

allowing us to apply van Beek’s bound (8.7):

0.7975 uj

S Ve W

which depends on 6 and n. To illustrate, we select a sample size of n = 20 and set 6§ = 1, to
find:

B/.{n-»20,6-1}//N

0.547985

At our chosen point, van Beek’s bound is particularly large, and so will not be of any real
use in judging the effectiveness of the asymptotic distribution in this case. Fortunately,
with mathStatica, it is reasonably straightforward to evaluate the exact value of the
approximation error by computing the left-hand side of (8.7). Recalling that S, = Y\, X;,
we have

F,(w,) P(Z, =w,)

n!s, -0 < )

V20/n
P(S, <w.V20n +no).

_ A

Example 23 of Chapter 4 shows that the random variable S, ~ Chi-squared(n 6). Its pdf
g(s,) is thus:

g= ——; domain[g] = {Sn, 0, ©} & {6>0, n>0};

Then, F,(w.) is:

F, =Prob[w* ‘\/Zen +no, g]

) Gamma[“Te, Lo A—Jnfzw‘ }
- E)
[

+

]

After evaluating ®(w,), we can plot the actual error caused by approximating F, with a
Normal distribution, as shown in Fig. 2.
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-2 2 4
Fig. 2: Actual approximation error (n = 20, 6 = 1) in absolute value ﬁ

It is easy to see from this diagram that at our selected values of n and 6, the discrepancy
(in absolute value) between the exact cdf and the cdf of the asymptotic distribution is no
larger than approximately 0.042. This is considerably lower than the reported van Beek
bound of approximately 0.548. The error the asymptotic distribution induces is
nevertheless fairly substantial in this case. Of course, as sample size increases, the size of
the error must decline. ]

I 8.4 Central Limit Theorem

§8.2 discussed the convergence in distribution of a sequence of random variables whose
distribution was known. In practice, such information is often not available, thus
jeopardising the derivation of the limiting distribution. In such cases, if the variables in the
sequence are used to form sums and averages, such as S, and X,,, the limiting distribution
can often be derived by applying the famous Central Limit Theorem. Since many
estimators are functions of sums of random variables, the Central Limit Theorem is of
considerable importance in statistics. See Le Cam (1986) for an interesting discussion of
the history of the Central Limit Theorem.

We consider random variables constructed in the following manner,

Sy —ay
by

(8.8)

where {a, }::1 and {b, }::1 represent sequences of real numbers. The random variables
appearing in the sum S,, namely, {X;}i_,, are the first n elements of the infinite-length
sequence {X,},_, . If we set

a, = Y E[X;] and b2 =) Var(X;) (8.9)

i=1 i=1
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then (8.8) would be a standardised random variable—it has mean O and variance 1.
Notice that this construction necessarily requires that the mean and variance of every
random variable in the sequence {X,,}::1 exists. The Central Limit Theorem states the
conditions for {X,}, {a,} and {b,} in order that

Sy = an d;

n

z (8.10)

for some random variable Z. We shall only consider cases for which Z ~ N(0, 1).

We present the Lindeberg—Lévy version of the Central Limit Theorem, which applies
when the variables {X,,}::1 are mutually independent and identically distributed (iid). The
Lindeberg—Lévy version is particularly relevant for determining asymptotic properties of
estimators such as X,, where X, is constructed from size n random samples collected on
some variable which we may label X. Assuming that E[X] = u and Var(X) = o2, under the
iid assumption, each variable in {X,} _, may be viewed as a copy of X. Hence E[X;] = u
and Var(X;) = o2. The constants in (8.9) therefore become

a,=npu and b =no?

and the theorem states the conditions that u and o> must satisfy in order that the limiting
distribution of (S,, — n /1)/ Vno? isZ ~N(, 1).

be
independent and identically distributed, each with finite mean y and finite variance o.

Then the random variable

Theorem (Lindeberg—Lévy): Let the random variables in the sequence {X,}.

n=1

S,—npu
——_a'\/; (8.11)

converges in distribution to a random variable Z ~ N(0, 1).

Proof: See, for example, Mittelhammer (1996, p.270).
[

The strength of the Central Limit Theorem is that the distribution of X need not be
known. Of course, if X ~ N(u, 0?), then the theorem holds trivially, since the sampling
distribution of the sample sum is also Normal. On the other hand, for any non-Normal
random variable X that possesses a finite mean and variance, the theorem permits us to
construct an approximation to the sampling distribution of the sample sum which will
become increasingly accurate with sample size. Thus, for the sample sum,

S, = N(nu, no?) (8.12)
and, for the sample mean,

X, 4 N(/J, ﬂj—) (8.13)
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@ Example 6: The Sample Mean and the Uniform Distribution

Let X ~ Uniform(0, 1), the Uniform distribution on the interval (0, 1). Enter its pdf f(x) as:
f =1; domain[f] = {x, 0, 1};
The mean u and the variance o> of X are, respectively:

Expect [x, f]

1

2

Var[x, f]

1

12

Let X3 denote the sample mean of a random sample of size n =3 collected on X.
Now suppose, for some reason, that we wish to obtain the probability:

_ 1 v 5
p—P(z <X3< g)
As the conditions of the Central Limit Theorem are satisfied, it follows from (8.13) that
the asymptotic distribution of X3 is:
v 4 1 1
X; 2 N(? g).

We may therefore use this asymptotic distribution to find an approximate solution for p.
Let g(X) denote the pdf of the asymptotic distribution:

1 _Gew? 1 1
——— e /. {uo> =, 0-=};
ovVar 2 6

{xl -0, °°};

g =

domain[g]

Then p is approximated by:

Prob[—z-, g] - Prob[—;-, g] // N
0.9545

Just as we were concerned about the accuracy of the asymptotic distribution in
Example 5, it is quite reasonable to be concerned about the accuracy of the asymptotic
approximation for the probability that we seek; after all, a sample size of n = 3 is far from
large! Generally speaking, the answer to ‘How large does n need to be?” is context
dependent. Thus, our answer when X ~ Uniform(0, 1) may be quite inadequate under
different distributional assumptions for X.
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o Small Sample Accuracy

In this subsection, we wish to compare the exact solution for p, with our asymptotic
approximation 0.9545. For the exact solution, we require the sampling distribution of X;.
More generally, if X ~ Uniform(0, 1), the sampling distribution of X, is known as Bates’s
distribution; for a derivation, see Bates (1955) or Stuart and Ord (1994, Example 11.9).
The Bates(n) distribution has an n-part piecewise structure:

k+1

n

k
Bates[x , n_] := Table[{_ <x<
n

’

k : : n-1
n - 1 : . . _ 1
n E ico (-1)" Binomial[n, i] (x —n)

Expand[ m-1)! ]}’

{k, 0, n-1}]

For instance, when n = 3, the pdf of ¥ = X3 has the 3-part form:

Bates [y, 3]

1 27 y?
O=y<+ 5
T sy<Z -Z2+27y-27y?
%sy<l 22—7—27y+%

This means if 0 <y < %, the pdf of Y is given by h(y) = %, and so on. In the past, we

have used If statements to represent 2-part piecewise functions. However, for functions
with at least three parts, a Which statement is required. Given Y = X, ~ Bates(n) with
pdf h(y), we may create the Which structure as follows:

hiy_]
domain[h[y]]

Which @@ Flatten[Bates [y, 3]]
{Yl 0, 1} 7

2
Which[0 <y < % 27y

_,.2
’3—y 3’

IR NI

2
<y<1, 2—7A727y+ 27y }

72+27y727y2, 5 5

2

Then, the natural way to find p with mathStatica would be to evaluate
Prob| % , hiyl] - Prob] % , hy]1]. Unfortunately, at present, neither Mathematica
nor mathStatica can perform integration on Which statements. However, implementation
of this important feature is already being planned for version 2 of mathStatica.

Nevertheless, we can still compute the exact value of p manually, as follows:

S
G

%27y2 7 9 2 27
j dly+J (——+27y—27y)dly+j — =27y +
1 2 1 2 2 2

27 y?

dy

23

24



290 CHAPTER 8 §8.4

where 23/24 ~(0.958333. By contrast, the approximation based on the asymptotic
distribution was 0.9545. Thus, asymptotic theory is doing fairly well here —especially
when we remind ourselves that the sample size is only three! Figure 3 illustrates the pdf of
X3, which certainly has that nice ‘bell-shaped’ look associated with the Normal
distribution.

PlotDensity[h[y]];

hly]

1.5 ¢

05

. . . . y
0.2 0.4 0.6 0.8 1

Fig. 3: Density of X3 — the Bates(3) distribution

Next, we examine the approximation provided by the cdf of the asymptotic N(O, 1)
distribution. In Example 5, a similar exercise was undertaken using the van Beek bound,
as well as plotting the absolute difference of the exact to the asymptotic distribution. This
time, however, we shall take a different route. We now conduct a Monte Carlo exercise to
compare an artificially generated distribution with the asymptotic distribution. To do so,
we generate a pseudo-random sample of size n =3 from the Uniform(0, 1) distribution
using Mathematica’s internal pseudo-random number generator: Random/[ ]. The sample
mean X3 is then computed. This exercise is repeated T = 2000 times. Here then are T
realisations of the random variable X5:

realisations =
Plus @@ Table[Random|[], {3}]

Table [
3

, {2000}];

We now standardise these realisations using the true mean (%) and the true standard
deviation (%):

. . 1
realisations - >

Sdata = T ;
6
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We may use a quantile—quantile plot to examine the closeness of the realised standardised
sample means to the N(0, 1) distribution. If the plot lies close to the 45° line, it suggests
that the distribution of the standardised realisations is close to the N(0, 1). The
mathStatica function QQP1ot constructs this quantile—quantile plot.

QQPlot [Sdata] ;

3 L
[ ]
LN ]
]
]

2 L

1 L
38
£
<
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(]
=
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<
v
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-2t

L)
o °°
_3 L
-3 -2 -1 0 1 2 3

Theoretical quantiles

Fig. 4: Quantiles of X; against the quantiles of N(0, 1)

The plotted points appear slightly S-shaped, with the elongated centre portion (from
values of about —2 to +2 along the horizontal axis) closely hugging the 45° line.
However, in the tails of the distribution (values below —2, and above +2), the accuracy of
the Normal approximation to the true cdf weakens. The main reason for this is that the
standardised statistic 6 (X3 — %) is bounded between —3 and +3 (notice that the plot stays
within this interval of the vertical axis), whereas the Normal is unbounded. Evidently, the
asymptotic distribution provides an accurate approximation except in the tails.

These ideas have practical value: they can be used to construct a pseudo-random
number generator for standard Normal random variables. The Normal pseudo-random
number generators considered previously were based on the inverse cdf method (see
§2.6 B and §2.6C) and the rejection method (see §2.6 D). By appealing to the Central
Limit Theorem, a third possibility arises. We have seen that the cdf of 6 (X3 — %)
performs fairly well in mimicking the cdf of the N(0, 1) distribution, apart from in the
tails. This suggests, due to the Central Limit Theorem, that an increase in sample size
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might improve tail behaviour; in this respect, using a sample size of n = 12 is a common
choice. When n = 12, the statistic with a limiting N(0, 1) distribution is

12X -5)=S52-6
which is now bounded between —6 and +6. The generator works by taking 12 pseudo-
random drawings from the Uniform(0, 1) distribution, and then subtracts 6 from their
sum —easy!
NO1RNG := Plus @@ Table[Random[], {12}] -6

The function NO1RNG returns a single number each time it is executed. For example:

NO1RNG

-0.185085

The suitability of this generator can be investigated by using QQPlot.6 ]

I 8.5 Convergence in Probability

8.5 A Introduction

o
n=1°

For a sequence of random variables {X,,} convergence in probability is concerned with
establishing whether or not the outcomes of those variables become increasingly close to
the outcomes of another random variable X with high probability. A formal definition
follows:

Let the sequence of random variables {X,},_, and the random variable X be defined
on the same probability space. If for every € > 0,

lim,. P(| X, —X| =¢€)=0 (8.14)

L . . . p
then X,, is said to converge in probability to X, written X, — X.

The implication of the definition is that, if indeed {X,},_, is converging in probability
to X, then for a fixed and finite value of n, say n,, the outcomes of X can be used to
approximate the outcomes of X, . As we are now referring to outcomes of random
variables, it is necessary to insist that all random variables in {X,}=_, be measured in the
same sample space as X.7 This was not the case when we considered convergence in
distribution, for this property concerned only the cdf function, and variables measured in
different sample spaces are not generally restricted from having equivalent cdf’s.
Accordingly, convergence in probability is a stronger concept than convergence in
distribution.
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The following rule establishes the relationship between convergence in probability
and convergence in distribution. If X, —, X, then it follows that the limiting cdf of X,
must be identical to that of X, and hence,

X, % X implies X, <4 x (8.15)

On the other hand, by the argument of the preceding paragraph, the converse is not
generally true. The situation when the converse is true occurs only when X is a degenerate
random variable, for then convergence in distribution specifies exactly what that value
must be. For a fixed constant c,

X L x=c implies and is implied by X, N X =c. (8.16)

The following two examples show the use of mathStatica in establishing convergence in
probability.

@ Example 7: Convergence in Probability to a Normal Random Variable

Suppose that the random variable X,, = (1 + %)X, where n =1, 2, .... Clearly, X,, and X
must lie within the same sample space for all n, as they are related by a simple scaling
transformation. Moreover, it is easy to see that | X, - X | = % | X | Therefore,

P(|X,-X| =€) = P(|X]| = ne). (8.17)
For any random variable X, and any scalar @ > 0, we may express the event { | X | >} as
the union of two disjoint events, {X > a}|J{X <—a}. Therefore, the occurrence
probability can be written as

P(|X|za) = PXz0a) + PX < -a). (8.18)

Now if we suppose that X ~ N(0, 1), and take a = n g, the right-hand side of (8.17)
becomes

(1 -=®ne) + ¢(-ne) = 2(1 —d(ne))

where ® denotes the cdf of X, and the symmetry of the pdf of X about zero has been
exploited. This can be entered into Mathematica as:

f = ; domain[f] = {x, -o0, };

2]

sol =2 (1-Prob[ne, £]) // Simplify

lerf[

28
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In light of definition (8.14), we now show that X, converges in probability to X because
the following limit is equal to zero:

<< Calculus Limit"
Limit[sol, n - ]
Unprotect [Limit]; Clear[Limit];

0

As the limit of (8.17) is zero, X, L x. of course, this outcome should be immediately
obvious by inspection of the relationship between X, and X; the transforming scalar
(1+%)—>1asn—>00. | |

Showing convergence in probability often entails complicated calculations, for as
definition (8.14) shows, the joint distribution of the random variables X, and X must
typically be known for all n. This, fortunately, was not necessary in the previous example
because the relation X, = (1 + %)X was known. In any case, from now on, our concern
lies predominantly with convergence in probability to a constant. Although this type of
convergence is easier to deal with, this does not mean that it is less important. In fact,
when it comes to determining properties of estimators, it is of vital importance to establish
whether or not the estimator converges in probability to the (constant) parameter for which
it is proposed. Under this scenario, we take X to be constant in (8.14). Then X can be
thought of as representing a parameter #, while X, may be viewed as the estimator
proposed to estimate it. Under these conditions, if (8.14) holds, X, is said to be consistent
for 6, or X,, is a consistent estimator of 6.

@ Example 8: Convergence in Probability to a Constant

For a random sample of size n from a N(6, o?) population, the sample mean X, is
proposed as an estimator of 6. We shall show, using definition (8.14), that X, is a
consistent estimator of 6; that is, we shall show, for every € > 0,

lim,, P(|X,-0|=¢)=0.
— 2
Input into Mathematica the pdf of X,,, which we know to be exactly N (0, U-T):

1 &-w?

£= —— @ e /. {u—>e, o—»c/‘\/_n_};

ovVan

domain[£f] =
{%x, -o0, =} && {6 € Reals, >0, n> 0, n € Integers};

Now, by (8.18),

P(|X,-0|z¢) = PX,-0=¢) + PX,-0 < —¢)

=PX, z=e+60) + PX, < —e+6)
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which is equal to:

sol =1 -Prob[e+6, f] + Prob[-£+6, £f] // FullSimplify

<’

Erfc[ ne}

<‘

2 C
Taking the limit, we find:

<< Calculus Limit"

1sol = Limit [sol, n —» ]

Unprotect [Limit]; Clear[Limit];
«Sign[e]?

@ signiol? (O
)

The output is not zero as we had hoped for, but if we apply Simplify along with the
conditions on ¢ and o

Simplify[lsol, {e >0, o> 0}]

0

= P . = . . .
Thus, X,, — 6, that is, X,, is a consistent estimator of 6. | |

8.5 B Markov and Chebyshev Inequalities

In the previous example, the sample mean was shown to be a consistent estimator of the
population mean (under Normality) by applying the definition of convergence in
probability (8.14). Essentially, this requires deriving the cdf of the estimator, followed by
taking a limit. This procedure may become less feasible in more complicated settings.
Fortunately, it is often possible to establish consistency (or otherwise) of an estimator by
only knowing its first two moments. This is done using probability inequalities. Consider,
initially, Markov’s Inequality

P(|X|=a) = o £]|X]] .19)
valid for @ > 0 and provided the k™ moment of X exists. Notice that the inequality holds
for X having any distribution. For a proof of Markov’s Inequality, see Billingsley (1995).
A special case of Markov’s Inequality is obtained by replacing | X | with | X—u |, where
u = E[X], and setting k = 2. Doing so yields

P(|X-u|=za) = a? ElX-w’] = a7 Var(X) (8.20)

which is usually termed Chebyshev’s Inequality.
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@ Example 9: Applying the Inequalities

Let X denote the number of customers using a particular gas pump on any given day.
‘What can be said about P(150 < X < 250) when it is known that:

(i) E[X] =200 and E[(X —200)*] = 400, and

(i) E[X] =200 and E[(X — 200)*] = 10°?
Solution (1): We have u = 200 and Var(X) = 400. Note that

P(150 < X <250) = P(|X-200| < 50) = 1-P(|X-200]| = 50).
By Chebyshev’s Inequality (8.20), with a = 50,

P(|X-200| = 50) = S8 = 0.16.

Thus, P(150 < X <250) = 0.84. The probability that the gas pump will be used by
between 150 and 250 customers each day is at least 84%.

Solution (ii): Applying Markov’s Inequality (8.19) with X replaced by X — 200, with « set
to 50 and k set to 4, finds

P(|x-200] = 50) = % = o116,

In this case, the results from (i) and (ii) are equivalent. [ |

8.5 C Weak Law of Large Numbers

There exist general conditions under which estimators such as X, converge in probability,
as sample size n increases. Inequalities such as Chebyshev’s play a vital role in this
respect, as we now show.

In Chebyshev’s Inequality (8.20), replace X, u and « with the symbols X, 6 and &,
respectively. That is,

P(|X,-6|z¢) = &2 E[X, -0)] (8.21)

where we interpret 6 to be a parameter, and given constant € > 0. Let MSE denote the
expectation on the right-hand side of (8.21). Under the assumption that (Xi, ..., X,,) is a
random sample of size n drawn on a random variable X, it can be shown that:8

MSE = E[(X,-60] = L Ex-07] + =L Ex]-67. (8.22)

In the following example, MSE is used to show that the sample mean X, is a consistent
estimator of the population mean.
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@ Example 10: Consistent Estimation

Let X ~ Uniform(0, 1) with pdf:
£f=1; domain[f] = {x, 0, 1};

Let parameter 6 € (0, 1). We may evaluate MSE (8.22) as follows:

1
MSE = — Expect[ (x-6)2%, £f] +
n

(n-1) 2 . .
——— (Expect[x, £] -6)° // Simplify

1 1
+

=l _ 2
4" 12n 97%°

Accordingly, the right-hand side of (8.21) is given simply by £72 (% + 121n -0+6%),
when X ~ Uniform(0, 1).

Taking limits of both sides of (8.21) yields
limoe P(| X, —0]2¢) < e2(5 -0 + 6.

Figure 5 plots the limit of MSE across the parameter space of 6:
0.25

0.2

0.15 +

0.1

0.05 |

0.2 0.4 0.6 0.8 1

Fig. 5: Limit of MSE against 0

Since the plot is precisely 0 when 6 =6, = %, for every £>0, it follows from the

definition of convergence in probability (8.14) that X, 2 %, and ensures, due to

uniqueness, that X, cannot converge in probability to any other point in the parameter
space. X, is a consistent estimator of f, = % What, if anything, is special about % here?
Put simply, E[X]= % Thus, the sample mean X, is a consistent estimator of the
population mean. ]
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Example 10 is suggestive of a more general result encapsulated in a set of theorems
known as Laws of Large Numbers. These laws are especially relevant when trying to
establish consistency of parameter estimators. We shall present just one — Khinchine’s
Weak Law of Large Numbers:

Theorem (Khinchine): Let {X,},_, be a sequence of mutually independent and identically

distributed random variables with finite mean . The sample mean:
X, 5 L (8.23)

Proof: See, for example, Mittelhammer (1996, pp. 259-260).
|

In Khinchine’s theorem, existence of a finite variance o for the random variables in the
sequence is not required. If o> is known to exist, a simple proof of (8.23) is to use

Chebyshev’s Inequality, because E [()_(,, - /1)2] = Var(X,) = a2

n

I 8.6 Exercises

1. Let X, ~ Bernoulli(+ + <), for ne (1,2, ...}. Show that X, - X ~ Bernoulli(+)
using (i) the pmf of X,,, (ii) the mgf of X,,, and (iii) the cdf of X,,.

2. Let X ~ Poisson(A). Derive the cf of X, = (X — A)/\/X. Then, use it to show that
Xy -5 Z~ N, 1)as A > .

3. Let X ~ Uniform(0, 6), where 6 >0. Define X; as the j th order statistic from a
random sample of size n drawn on X, for j € {1, ..., n}; see §9.4 for details on order
statistics. Consider the transformation of X, to Y; such that Y; = n(6 - X;)). By
making use of mathStatica’s OrderStat, OrderStatDomain, Transform,
TransformExtremum and Prob functions, derive the limit distribution of Y;
when (i) j = n, (ii) j = n — 1, and (iii) j = n — 2. From this pattern, can you deduce the
limit distribution of Y,_;, where constant k is a non-negative integer k?

4. Let X ~ Cauchy, and let (X, ..., X,;) denote a random sample of size n drawn on X.
Derive the cf of X. Then, use it to show that the sample mean X, = % Y, X; cannot
converge in probability to a constant.

5. Let X ~ Uniform(0, ), and let (X;, X5, ..., X,) denote a random sample of size n
drawn on X. Determine a, and b, such that S—”b_—a”— Az~ N(, 1), where S, =
2?21 cos(X;). Then evaluate van Beek’s bound.

6. Simulation I: At the conclusion of Example 6, the function

NO1RNG := Plus @@ Table [Random[], {12}] -6

was proposed as an approximate pseudo-random number generator for a random
variable X ~ N(0, 1). Using QQP1ot, investigate the performance of NO1RNG.
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7. Simulation II: Let X ~ N(0, 1), and let ¥ = X?> ~ Chi-squared(1). From the relation
between X and Y, it follows that NOIRNG? is an approximate pseudo-random
number generator for Y. That is, if

NO1RNG —% X, then NO1RNG? —-% V.

(i) Noting that the sum of m independent Chi-squared(1) random variables is
distributed Chi-squared(m), propose an approximate pseudo-random number
generator for Z ~ Chi-squared(m) based on NO1RNG.

(ii) Provided that X and Z are independent, 7 = X / \/ Z/—m ~ Student’s #(m). Hence,
propose an approximate pseudo-random number generator for 7 based on
NO1RNG, and investigate its performance when m = 1 and 10.

8. Simulation III: Let (W;, W,, ..., W,,) be mutually independent random variables
such that W; ~ N(y;, 1). Define V = ", W7 ~ Noncentral Chi-squared (m, 1), where
A= Z,ni1 /112'
(i) Use the relationship between V and {W;} to propose an approximate pseudo-

random number generator for V based on NO1RNG, as a Mathematica function
of m and A.

(ii)) Use NO1RNG and DiscreteRNG to construct an approximate pseudo-random
number generator for V based on the parameter-mix

N>

Noncentral Chi-squared (m, ) = Chi-squared (m + 2 K) /\ Poisson(
K

as a Mathematica function of m and A.

9. For a random variable X with mean u#0 and variance o2, reformulate the

Chebyshev Inequality (8.20) in terms of the relative mean deviation
|X —ul

T | % | That is, using pen and paper, show that

| =2z =P

where 8> 0, and r denotes the signal-to-noise ratio | | /. Then evaluate 7 for the
Binomial(n, p), Uniform(a, b), Exponential(A) and Fisher F(a, b) distributions.

10. Let X denote a random variable with mean u and variance . In Chebyshev’s
Inequality, show (you need only use pencil and paper) that if @ =100, then
P( | X - /1| za/) <0.01. Next, suppose there is more known about X; namely,
X ~ N(u, 0®). By evaluating P( | X—u | = a/), show that the assumption of
Normality has the effect of allowing the inequality to hold over a larger range of
values for a.

11. Let X ~ Binomial(n, p), and let a <b be non-negative integers. The Normal
approximation to the Binomial is given by

Pla<X<b) ~ &) —-P(c)

where ® denotes the cdf of a standard Normal distribution, and

1 1
a-np—~ b—np+~
c=2""P" 3 and d=2""PT3

Vnp(1-p) Vap(-p)
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12.

CHAPTER 8 §8.6

Investigate the accuracy of the approximation by plotting the error of the
approximation when a = 20, b = 80 and p = 0.1, against values of n from 100 to 500
in increments of 10.

Let X ~ Binomial(n, p) and Y ~ Poisson(n p), and let a < b be non-negative integers.
The Poisson approximation to the Binomial is given by

Pla<X<b) ~Pla<Y=<bh).

Investigate the accuracy of the approximation.



