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Notes

Chapter 1 Introduction

1.

Nota bene Take note.

Chapter 2 Continuous Random Variables

1.

Warning: On the one hand, o is often used to denote the standard deviation. On the
other hand, some distributions use the symbol o to denote a parameter, even though
this parameter is not equal to the standard deviation; examples include the Lognormal,
Rayleigh and Maxwell-Boltzmann distributions.

The textbook reference solution, as listed in Johnson et al. (1994, equation (18.11)), is
incorrect.

. Black and Scholes first tried to publish their paper in 1970 at the Journal of Political

Economy and the Review of Economics and Statistics. Both journals immediately
rejected the paper without even sending it to referees!

The assumption that investors are risk-neutral is a simplification device: it can be
shown that the solutions derived are valid in all worlds.

Chapter 3 Discrete Random Variables

1.

The more surface area a face has, the greater the chance that it will contact the table-
top. Hence, shaving a face increases the chance that it, and its opposing face, will
occur. Now, because the die was a perfect cube to begin with, shaving the 1-face is no
different from shaving the 6-face. The chance of a 1 or 6 is therefore uniformly
increased. To see intuitively what happens to the probabilities, imagine throwing a die
that has been shaved to extreme —the die would be a disk with two faces, 1 and 6, and
almost no edge, so that the chance of outcomes 2, 3, 4 or 5 drop (uniformly) to zero.

The interpretation of the limiting distribution is this: after the process has been
operating for a long duration (‘burnt-in’), the (unconditional) probability p; of the
process being in a state k is independent of how the process first began. For given states
k and j, p; is defined as lim,,. P(X; =k | Xo = j) and is invariant to the value of j.
Other terms for the limiting distribution include ‘stationary distribution’, ‘steady-state
distribution’, and ‘equilibrium distribution’. For further details on Markov chains see,
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for example, Taylor and Karlin (1998), and for further details on asymptotic statistics,
see Chapter 8.

3. In the derivations to follow, it is easier to think in terms of draws being made one-by-
one without replacement. However, removing at once a single handful of m balls from
the urn is probabilistically equivalent to m one-by-one draws, if not physically so.

4. To see that f(x) has the same probability mass under domain[f]l={x,0,n} as
under domain[f]={x,0,Min[n,r]}, consider the two possibilities: If n<r,
everything is clearly fine. If n>r, the terms added correspond to every
xe{r+1,...,n}. In this range, x >r, and hence (z__;l) is always 0, so that the

probability mass f(x) =0 for x > r. Thus, the probability mass is not affected by the
inclusion of the extra terms.

5. It is not appropriate to treat the component-mix X as if it is a weighted average of
random variables. For one thing, the domain of support of a weighted average of
random variables is more complicated because the values of the weights influence the
support. To see this, consider two Bernoulli variables. The domain of support of the
component-mix is the union {0, 1} J {0, 1} = {0, 1}, whereas the domain of support of
the weighted average is {0, w;, w,, 1}.

6. The assumption of Normality is not critical here. It is sufficient that Y; has a finite
variance. Then approximate Normality for ¥ = Z§:1 Y; follows by a suitable version of
the Central Limit Theorem; see, for example, Taylor and Karlin (1998, p.75).

7. When working numerically, the trick here is to ensure that the variance of the Normal
pdf 0> matches the variance of the parameter-mix model given by Expect [t w?,g]=
w? [ p. Then, taking say o = 1, we require p = w? for the variances to match. The
values used in Fig. 11 (c=1,w = Vo.1, p =0.1) are consistent with this requirement.

8. Lookup tables are built by DiscreteRNG using Mathematica’s Which function. To
illustrate, here is a lookup table for Example 17, where u = Random[]:

Which[ 0 < u < 0.1, -1. ,
0.1 <u < 0.5, 1.5,
0.5 < u < 0.8, Pi ,
True, 4.4 1]
Chapter 4 Distributions of Functions of Random Variables

1. Notes:
(i) For a more detailed proof, see Walpole and Myers (1993, Theorem 7.3).
dx 1

(ii)) Observe thatJ = dy = D

2. Let X ~ Exponential(<) with pdf /(x):

h=ae ®* ; domain[h] = {x%, 0, <} & {a >0} && {b> 0} ;
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Then, the pdf of Y = beX (b > 0) is:

Transform[y = be*, h]
TransformExtremum [y == be*, h]
-1l-a

ab®y
{y, b, »}&& {a>0, b>0}

The multivariate case follows analogously; see, for instance, Roussas (1997, p.232) or
Hogg and Craig (1995, Section 4.5).

Chapter 5 Systems of Distributions

1.

The area defining I(J) in Fig.1 was derived symbolically using Mathematica. A
comparison with Johnson ef al. (1994) shows that their diagram is actually somewhat
inaccurate, as is Ord’s (1972) diagram. By contrast, Stuart and Ord’s (1994) diagram
seems fine.

For somewhat cleaner results, note that:

(i) §7.2 B discusses unbiased estimators of central moments calculated from sample
data;

(i) The ‘quick and dirty’ formulae used here for calculating moments from grouped
data assume that the frequencies occur at the mid-point of each interval, rather
than being spread over the interval. A technique known as Sheppard’s correction
can sometimes correct for this effect: see, for instance, Stuart and Ord (1994,
Section 3.18).

. The reader comparing results with Stuart and Ord (1994) should note that there is a

typographic error in their solution to 5.

Two alternative methods for deriving Hermite polynomials (as used in statistics) are H1
and H2, where:

H1[j_] := 273/2 HermiteH[j, ] // Expand

and:
Clear([gl; g'l[z]=-zg[z];

H2[j_] == (—1)j Dlgl=], {2z, 3}] // Expand
glz]

H1 makes use of the built-in Hermi teH function, while H2 notes that if density g(z) is
N(O, 1), then g’(z) = —z g(z). While both H1 and H2 are more efficient than H, they are
somewhat less elegant in the present context.

. The original source of the data is Schwert (1990). Pagan and Ullah then adjusted this

data for calendar effects by regressing out twelve monthly dummies.
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Chapter 6 Multivariate Distributions

1. In order to ascribe a particular value to the conditioning variable, say f(x; | X, = %),
proceed as follows:

1
Conditional[x,, £] /. x; » ?

— Here is the conditional pdf £ (x; | %2 ):

—-— + X1
2

Do not use Conditional[x;, £ /. x3 > %]. In mathStatica functions, the
syntax £ /. x; - % may only be used for replacing the values of parameters (not
variables).

2. Some texts refer to this as the Farlie-Gumbel-Morgenstern class of distributions; see,
for instance, Kotz et al. (2000, p.51).

3. More generally, if Z ~ N(0, 1), its cdf is ®(z) = % (1 +Erf[%]). Then, in a zero

correlation m-variate setting with 7 = “Z,...Zy) ~N (6, I,,,), the joint cdf will be:

(

0=

" 2 )... Zm_
) (1+Erf[\/_2_]) (1+Erf[\/_2_]).
This follows because (Z;, ..., Z,) are mutually stochastically independent (Table 3 (i)).

4. Mathematica’s Multinormal statistics package contains a special CDF function for
the multivariate Normal density. Under Mathematica Version 4.0.x, this function does
not work if any pjj =0, irrespective of whether the 0 is a symbolic zero (0) or a
numerical zero (0.). For instance, P(X < -2, Y <0, Z < 2) fails to evaluate under zero
correlation:

CDF[dist3 /. p_» 0, {-2, 0, 2}]

— Solve::svars :
Equations may not give solutions for all "solve" variables.

— CDF::mnormfail: etc ...

Fortunately, this problem has been fixed, as of Mathematica Version 4.1.

5. Under Mathematica Version 4.0, the CDF function in Mathematica’s Multinormal
statistics package has two problems: it is very slow, and it consumes unnecessarily
large amounts of memory. For example:

G[1, -7, 3] // Timing

{7.25 Second, 1.27981x107*?}
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Rolf Mertig has suggested (in email to the authors) a fix to this problem that does not
alter the accuracy of the solution in any way. Simply enter:

Unprotect [MultinormalDistribution];

UpValues [MultinormalDistribution] =
UpValues [MultinormalDistribution] /.
HoldPattern [NIntegrate[a_, b_ _]] »»
NIntegrate [Evaluate[a], b]:;

and then the CDF function is suddenly more than 40 times faster, and it no longer hogs
memory:

G[1, -7, 3] // Timing

{0.11 Second, 1.27981x107*?}

Under Mathematica Version 4.1, none of these problems occur, so there is no need to
fix anything.

. A random vector X is said to be spherically distributed if its pdf is equivalent to that of
Y=H ?, for all orthogonal matrices H. The zero correlation bivariate Normal is a
member of the spherical class, because its pdf

Tz o[- 17
depends on X only through the value of the scalar x' X, and so
Hx)"' (Hx) = x" (H"H)x = x"x, because H' H = I,. An interesting property of
spherically distributed variables is that a transformation to polar co-ordinates yields
mutually stochastically independent random variables. Thus, in the context of Example
20 (Robin Hood) above, when p =0, the angle ® will be independent of the radius
(distance) R (see density g(r, 6)). For further details on the spherical family of
distributions, see Muirhead (1982).

. The multinomial coefficient

( n )_ n!
X1y X2y cens X xl!xz!-~-xm!

s vm

is provided in Mathematica by the function Multinomial [ xi, X5, ..., X,, |. It gives
the number of ways to partition n objects into m sets of size x;.

. Alternatively, one can find the solution ‘manually’ as follows:

E[@tl Y+t Yy + (1 +t2)Y0] - E[ eh Y, ] E[ e Yz] E[ @(t1+t2) Yo] by Table 3 (ll)
exp( (" = DA + (€2 = 1) Ay + ("2 = 1) ).

The same technique can be used to derive the pgf.
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Chapter 7 Moments of Sampling Distributions

1.

Chapter 2 introduced a suite of converter functions that allow one to express any
population moment ({1, i, or x) in terms of any other population moment ({1, p, or x).
These functional relationships also hold between the sample moments. Thus, by
combining the moment converter functions with equation (7.2), we can convert any
sample moment (raw, central or cumulant) into power sums. For instance, to convert
the fourth central sample moment m,4 into power sums, we first convert from central m
to raw m moments using CentralToRaw[4, m, /n] (note the optional notation
arguments m and m), and then use (7.2) to convert the latter into power sums. Here is
my in terms of power sums:

’ ’ Sj
CentralToRaw[4, m, m] /. m; > -
n
m%735§+6s%sgi4sls3+ﬂ_
4 n4 n3 n? n
This is identical to:
SampleCentralToPowerSum [4]
m%735§+6s%sgi4sls3+ﬂ_
4 n4 n3 n? n

Kendall’s comment on the term ‘polykays’ can be found in Stuart and Ord (1994,
Section 12.22).

. Just as we can think of moments as being ‘about zero’ (raw) or ‘about the mean’

(central), one can think of cumulants as also being ‘about zero’ or ‘about the mean’.
The moment of moment functions that are expressed in terms of cumulants, namely:

RawMomentToCumulant
CentralMomentToCumulant
CumulantMomentToCumulant

... do their internal calculations about the mean. That is, they set u; = x; =0. As
such, if p = PolyK[{1,2,3}1[2], then RawMomentToCumulant [1, p] will
return 0, not x; kx, x3. To force mathStatica to do its __ ToCumulant calculations
about zero rather than about the mean, add Z to the end of the function name: e.g. use
RawMomentToCumulantZ. For example, given:

p = PolyK[{1, 2, 3}][2]:
... compare:

RawMomentToCumulant [1, p]

0
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with:

RawMomentToCumulantZ [1l, p]

K1 K2 K3

Working ‘about zero’ requires greater computational effort than working ‘about the
mean’, so the various CumulantZ functions are often significantly slower than
their Z-less cousins.

PowerSumToAug, AugToPowerSum and MonomialToPowerSum are the only
mathStatica functions that allow one to use shorthand notation such as {1*}to denote
{1, 1, 1, 1}. This feature does not work with any other mathStatica function.

Chapter 8 Asymptotic Theory

1.

The discussion of Calculus Limit" has benefitted from detailed discussions with
Dave Withoff of Wolfram Research.

Some texts (e.g. Billingsley (1995)) separate the definition into two parts: (i) terming
(8.1) the weak convergence of {Fn}:f:1 to F, and (ii) defining convergence in
distribution of {X,},,_, to X only when the corresponding cdf’s converge weakly.

. van Beek improved upon the original version of the bounds referred to in the so-called

Berry—Esseen Theorem; for details see, amongst others, Bhattacharya and Rao (1976).
® is the limiting distribution of W, by the Lindeberg—Feller version of the Central
Limit Theorem. This theorem is not discussed here, but details about it can be found in

Billingsley (1995) and McCabe and Tremayne (1993), amongst others.

Under Version 4.0 of Mathematica, some platforms give the solution for y3 as

1 -e/2 -5 42 _
(2+0) (4+9)T[%] <<e <2 © (2+6)

2¢°% (32 <4+3e)r[1+%} +8 (4407 T[%%} -
o o o
o' (6+6) [ 5] -64Gama[3+ =, = ])))

Although this solution appears different to the one derived in the text, the two are
nevertheless equivalent.

. We emphasise that for any finite choice of n, this pseudo-random number generator is

only approximately N(0, 1).

For example, it makes no sense to consider the convergence in probability of {X,},_, to
X, if all variables in the sequence are measured in terms of pounds of butter, when X is
measured in terms of numbers of guns.
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8. Letting MSE = E[(X, - 6)’], write

n 2 non
MSE = E{(% g(x,- —e)] } == 2 E[X -0 (X; -0)]

i=1 j=1
Of the n? terms in the double-sum there are n when the indices are equal, yielding
expectations in the form of E[(X; — 6)*]; the remaining n(n — 1) terms are of the form
E[(X; = 0) (X; — 0)]. Due to independence, the latter expectation can be decomposed
into the product of expectations: E[X; — 6] E[X; — 6]. Thus,

MSE = = Y E[(X; - 6)'] + -
i=1 i=1
i*

D E[X; — 0] E[X; - 6].
j=1
J

As each of the random variables in the random sample is assumed to be a copy of a
random variable X, replace E[(X; —6)*] with E[(X —6)*], as well as E[X; — 6] and
E[X; — 6] with E[X — 0]. Finally, then,

MSE = -5 > E[(X-0?] + -5 3 Y (EIX - 0]’
i=1 i=1 j=1
i#j

= S Elx =071 + 2L (EX]-6).

Chapter 9 Statistical Decision Theory

1. Sometimes, we do not know the functional form of g(@; 9); if this is the case then an
alternative expression for risk involves the multiple integral:

R@(G)zf-nfL(@(xl, o X)), 0) Q1 e X O) dxy o

where we let 9(X 1, ..., X,) express the estimator in terms of the variables in the random
sample X1, ..., X,,, the latter having joint density f (here assumed continuous). For the
examples encountered in this chapter, we shall assume the functional form of g(@; 0) is
known.

2. The pdf of X, can be determined by considering the combinatorics underlying the re-
arrangement of the random sample. In all, there are n candidates from (Xi, ..., X,,) for
X, and n—1 remaining places that fall into two classes: r—1 places below x (x
represents values assigned to X(,)), and n — r places above x. Those that fall below x do
so with probability F(x), and those that lie above x do so with probability 1 — F(x),
while the successful candidate contributes the value of the pdf at x, f(x).

3. Johnson et al. (1995, equation (24.14)) give an expression for the pdf of X, which
differs substantially to the (correct) output produced by mathStatica. It is not difficult
to show that the former is incorrect. Furthermore, it can be shown that equations
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(24.15), (24.17) and (24.18) of Johnson et al. (1995) are incorrectly deflated by a factor
of two.

Mathematica solves many integrals by using a large lookup table. If the expression we
are trying to integrate is not in a standard form, Mathematica may not find the
expression in its lookup table, and the integral will fail to evaluate.

Chapter 10 Unbiased Parameter Estimation

1.

Many texts use the term Fisher Information when referring to either measure. Sample
Information may be viewed as Fisher Information per observation on a size n random
sample X = (X1, ..., X,,).

Example 10 is one such example. See Theorem 10.2.1 in Silvey (1995), or Gourieroux
and Monfort (1995, pp.81-82) for the conditions that a given statistical model must
meet in order that the BUE of a parameter exists.

. If the domain of support of X depends on unknown parameters (e.g. 6 in

X ~ Uniform(0, 6)), added care needs to be taken when using (10.13). In this book, we
shall not concern ourselves with cases of this type; instead, for further details, we refer
the interested reader to Stuart and Ord (1991, pp. 638-641).

This definition suffices for our purposes. For the full version of the definition, see, for
example, Hogg and Craig (1995, p.330).

Here, E[T] = (0xP(X, <k))+(1xP(X, > k)) = P(X, > k). Since X, is a copy of X, it
follows that 7 is unbiased for g(A).

Chapter 11 Principles of Maximum Likelihood Estimation

1.

If 6 is a vector of k elements, then the first-order condition requires the simultaneous
solution of k equations, and the second-order condition requires establishing that the
(kx k) Hessian matrix is negative definite.

It is conventional in the Normal statistical model to discuss estimation of the pair
(u, o?) rather than (u, o). However, because Mathematica treats > as a Power and
not as a Symbol, activities such as differentiation and equation-solving involving o
can not be undertaken. This can be partially overcome by entering SuperD[On]
which invokes a mathStatica function that allows Mathematica to differentiate with
respect to Power variables. Unfortunately, mathStatica does not contain a similar
enhancement for equation-solving in terms of Power variables.

. The following input generates an information message:

NSum: :nslim: Limit of summation n is not a number.

This has no bearing on the correctness of the output so this message may be safely
ignored. We have deleted the message from the text.
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4. Of course, biasedness is just one aspect of small sample performance. Chapter 9
considers other factors, such as performance under Mean Square Error.

5. The mgf of the Gamma(n, #) distribution may be derived as:

y.a—le—Y/b 1
W /. {a—»n, b->
a

g

’

ne}.

domain [g] {y, 0, «}&& {n >0, n € Integers, 6> 0};

Expect[e*Y, g]

Using simple algebra, this output may be re-written (8/(6 — %))", which matches the
mgf of logX.

6. Let {Y,} be a sequence of random variables indexed by n, and Y a random variable such
d
that Y,— Y. Let g denote a continuous function (it must be independent of n)

throughout the domain of support of {Y,}. The Continuous Mapping Theorem states

that g(Yn)i> g(Y); see, for example, McCabe and Tremayne (1993). In our case, we set
g(y) = y~!, and because convergence in distribution to a constant implies convergence
in probability to the same constant (§8.5 A), the theorem may be applied.

7. Alternatively, the limiting distribution of Vn (@ - 0) can be found by applying
Skorohod’s Theorem (also called the delta method). Briefly, let the sequence of random

variables {Y,} be such that \/ n Y, —c)i> Y, where ¢ is a constant and Y a random
variable, and let a function g have a continuous first derivative with G = dg(c)/dy.

Then Vn (g(Yn)—g(c))LGY. In our case, we have Vn (0 — 67) L6712 so

(Y} ={0"), c=0", Y=60'Z, where Z~N(O,1). Now set g(y)=1/y, so
G = —1/c%. Applying the theorem yields:

Vi (0-0) -5 (- 071 Z~ N, 62).

8. The log-likelihood can be concentrated with respect to the MLE of aq. Thus, if we let
(Y1, X1), ..., (Y,, X,)) denote a random sample of size n on the pair (¥, X), the MLE
of @ can, as a function of 3, be shown to equal

&= &) = log(% Sy e-ﬁxf].
i=1

The concentrated log-likelihood function is given by log L(&(8), 8), which requires
numerical methods to be maximised with respect to B (numerical optimisation is
discussed in Chapter 12).
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Chapter 12 Maximum Likelihood Estimation in Practice

1.

Of course, elementary calculus may be used to symbolically maximise the observed
log-likelihood, but our purpose here is to demonstrate FindMaximum. Indeed, from
Example 5 of Chapter 11, the ML estimator of A is given by the sample mean. For the
Nerve data, the ML estimate of A is:

SampleMean [xdata]

0.218573

For commentary on the comparison between ML and OLS estimators in the Normal
linear regression model see, for example, Judge et al. (1985, Chapter 2).

. Just for fun, another (equivalent) way to construct urules is:

urules = MapThread[ (uy; - #2) &, {Range[n], uvec}];
Short [urules]

{ur > 0., u; »0.13, <«<236>, uz3g »>-0.11}

FindMaximum / FindMinimum may sometimes work with subscript parameters if
Evaluate is wrapped around the expression to be optimised (i.e.
FindMinimum[Evaluate[expr],{...}]1); however, this device will not
always work, and so it is best to avoid using subscript notation with FindMaximum /
FindMinimum.

In practice, of course, a great deal of further experimentation with different starting
values is usually necessary. For space reasons, we will not pursue our search any
further here. However, we do encourage the reader to experiment further using their
own choices in the above code.

. d 14 . d
. In general, if X, — X and Y,, — ¢, where c is a constant, then X,, ¥, — ¢ X. We can

use this result by defining

v, = [2£
n &Bz .

Because of the consistency property of the MLE, we have Y, Lie=1. Thus,

% Vi (=) =5 1x N, af®) = NO, af?).
a

Therefore, at the estimates of & and 23,

OB Tn (- ) L N, ap).

ap?

Thus,
Vi (- < N0, @),



458 NOTES

7.

8.

10.

11.

12.

13.

The inverse cdf of the N(0, 1) distribution, evaluated at 1 — w/2, is derived as follows:

Y

e T
f = ; domain[£f] = {x, -, «};

Solve[y == Prob[x, £f], x] /.y~ (1— %)

{{Xe\/?lnverseErf[O, -1+2 (lfg)]}}

Mathematica’s on-line help for FindMinimum has an example of this problem in a
one-dimensional case; see also Wolfram (1999, Section 3.9.8).

If we used count[x+ 1] instead of n,, the input would fail. Why? Because the
product,

G e Y YX count [x+1]
ﬂ < x! )

x=0

is taken with x increasing from O to G, where G is a symbol (because it has not been
assigned any numerical value). Since the numerical value of G is unknown,
Mathematica can not evaluate the product. Thus, Mathematica must treat x as a
symbol. This, in turn, causes count [x + 1] to fail.

In the previous input, it would not be advisable to replace G with 9, for then
Mathematica would expand the product, and SuperLog would not take effect.

The log-likelihood is concave with respect to y because:

Hessian[logLy, ¥]

_ S0 X D
Y2

... 1s strictly negative.

For example, an estimate of the standard error of the ML estimator of 7y, using the
Hessian estimator given in Table 3, is given by:

1
/. soly
-Hessian[logLy, ¥] /. {6> 9, n, :» count[x+ 1]}
0.0443622

It is a mistake to use the Newton—Raphson algorithm when the Hessian matrix is
positive definite at points in the parameter space because, at these points, (12.12) must
be positive-valued. This forces the penalty function/log-likelihood function to
increase / decrease in value from one iteration to the next—the exact opposite of how a
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gradient method algorithm is meant to work. The situation is not as clear if the Hessian
matrix is indefinite at points in the parameter space, because (12.12) can still be
negative-valued. Thus, the Newton—Raphson algorithm can work if the Hessian matrix
happens to be indefinite, but it can also fail. On the other hand, the BFGS algorithm
will work properly wherever it is located in parameter space, for (12.12) will always be
negative.

In our example, it is easy to show that the Hessian matrix is not negative definite
throughout the parameter space. For example, at (a, b, ¢) = (0, 1, 2), the Hessian matrix
is given by:

h = Hessian[obslogLA, {a, b, c¢}] /. {a>»0,b>1,c>2}//N

-180.07 -63.7694 -374.955
-63.7694 -2321.03 75.9626
-374.955 75.9626 489.334

The eigenvalues of this matrix are:

Eigenvalues[ h ]

{-2324.45, 660.295, -347.606}

Thus, h is indefinite since it has both positive and negative eigenvalues. Consequently,
the Hessian matrix is not negative definite throughout the parameter space.

If Method- QuasiNewton or Method-Newton is specified, then it is
unnecessary to supply the gradient through the option Gradient -
Grad[obslogLX, {a,b,c}], since these methods calculate the gradient
themselves. If Method - QuasiNewton or Method - Newton is specified, but
Mathematica cannot find symbolic derivatives of the objective function, then
FindMaximum will not work.

To illustrate, let the scalar function f(x) be such that the scalar xo minimises f; that is,
f'(x0) =0. Now, for a point x close to xy, and for f quadratic in a region about x,, a
Taylor series expansion about xq yields f(x) = f(xo) + f" (x0) (x — xo )2 /2. Point x will
be numerically distinct from x, provided at least that (x — x,)* is greater than precision.
Therefore, if $SMachinePrecision is equal to 16, it would not be meaningful to set
tolerance smaller than 1078,

It is inefficient to include a check of the positive-definiteness of W(;. This is because,
provided W, is positive definite, BFGS will force all W(; in the sequence to be
positive definite.

Our analysis of this test is somewhat informal. We determine whether or not the ML
point estimates satisfy the inequalities —that is, whether ﬁl < f?2 < [% holds — for our
main focus of attention in this section is the computation of the ML parameter
estimates using the NR algorithm.
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18. The cdf of a N(0, 1) random variable is derived as follows:

x2

@ =z

f = ; domain[f] = {x, -, «}; Prob[x, f]
V2

1 X

19. We refrain from using Subscript notation for parameters because FindMinimum /
FindMaximum, which we apply later on, does not handle Subscript notation well.

20. The Hessian can be compiled as follows:
hessfC = Compile[{a2, a3, bl, b2, b3}, Evaluate[H]];
Mathematica requires large amounts of memory to successfully execute this command.
In fact, around 43 MB of free RAM in the Kernel is needed for this one calculation; use
MemoryInUse[] to check your own memory performance (Wolfram (1999, Section
2.13.4)). We can now compare the performance of the compiled function hessfC with
the uncompiled function hess£. To illustrate, evaluate at the point A = (0, 0, 0, 0, 0):
Aval = {0., 0., 0., 0., 0.};

Here is the compiled function:

hessfcee@ Aval // Timing

{O .55 Second,

-20.5475 10.608 ~0.999693 -5.00375 -3.83075
10.608  -174.13 4.08597 31.0208 45.4937
-0.999693 4.08597 -65.9319 -4.54747x107 -2.72848x107 12
-5.00375 31.0208 0. -77.5857 2.27374x107%
-3.83075 45.4937 -7.7307x107?  1.3074x107? -78.8815

... while here is the uncompiled function:

hessf[Aval] // Timing

{2 .03 Second,

-20.5475 10.608 ~0.999693 -5.00375 -3.83075
10.608  -174.13 4.08597 31.0208 45.4937
-0.999693 4.08597 -65.9319 ~9.09495x 107 4.54747x10°" |}
-5.00375 31.0208 4.54747x107%3 -77.5857 2.27374x107%
-3.83075 45.4937 1.36424x107'%* 7.67386x10 3 -78.8815

The compiled function is about four times faster.
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21. The strength of support for this would appear to be overwhelming judging from an
inspection of the estimated asymptotic standard errors of ﬁl, Bz and f?g A rule of
thumb that compares the extent of overlap of intervals constructed as

estimate + 2 x (estimated standard deviation)

finds only a slight overlap between the intervals about the second and third estimates.
Formal statistical evidence may be gathered by performing a hypothesis test of multiple
inequality restrictions. For example, one testing scenario could be to specify the
maintained hypothesis as 81 = 8, = B3, and the alternative hypothesis as 8; < 5, < Bs.



