'2 ’3 l‘ f f3 ’4 f ‘2 L " l
10320 ,0,1 %0,1,0 #1,0,0 = 5090 14 0,2 £,1,0 Hy,0,0 = 3024044 o) #o,1,0 Ho,1,1 #1,0,0 + 43204

'2 . " '2 ‘ L I‘ ' ‘ ‘ I‘
2160 Lo 1,0 H40,1,2 #1,0,0 =15120 14 0,1 £0,1,0 0,2,0 H1,0,0 * 2160 24 0.2 K,1,0 #0,2,0 41,0,0 * ¢
’ ’ l4 s [4 l‘ L L l‘ f

'2 v 13 ’ L4 ’ J 13 r ’ ‘ 4
17230%,1,04“0:1“100“101*17280“00xﬂoxoﬂozoﬂxoo“xox‘zaaoﬂox1“020“

ATHEMAT%

1320 gy
36%30#100#102'60480%01%10#100#110’36401“00'"'" "ﬂ“no‘“‘

2880;40 w fo i S ”ooeedo‘,o#xoo#xozﬂn,10-14
2880 Ly oh 1,0, 00518i02.“1|o"17230%r.°lg“

.3
17230!‘010.“011w|ltb'“x01“110‘3640“001“020“103‘“1°°ﬂ1""--~%‘021

0 “1 o *QO o.“ 00“102“11
Hematieg:
A 2

11“100“101!‘110‘17 o-“xoxﬂﬁ

0 8y 0,1 + 864

- 1440 {4 o

17280 i 0,1 fo,1,0 £41,0,0 £41,0,1 “1

2 2 e

1728 fy, 1,0 £4,0,0 £1,0,2 £1,1,0 = 2880 [eee i 2“100“1 1,0 ’1152“00
‘ 10 ' t' .”‘"’_’// g ’ ‘

L4414 0 2“1 1,0 + 17280 16 0,1 STl “vage ey 1,0,0 #1,1,1 = 2880 44

376 i 2, 1#1 o 0 11 ‘3 - s 0,0 f,0,1 ,1,1 = 172

/7 A : o2
3456 £y 1 1 J“x,o,o i 1 ‘156.“0 0,1 ﬂx,o,o #1 1
364 iy 0 1 £1,1,0 £, ; e 1‘“0“0 1,0 “1 0,0
L fz
L728 kg, 1,0 41 ,0,0 ﬁ‘o,lox“loof-‘xzo'l'H
2880 15,0,1 #0,1,1 10,1 #o,1,0 H1,0,0 #y,0,1 1,2,
2
L728 1o,1,0 41,0,0 4320 245,0,1 #1,0,0 H1,1,0 H1,2,

3156-“0,0,1 ,“1‘0'0 “l, \ \J R o : ! / d :.’ 3‘\),.,V (’ Q 0 u,; o J‘\ 2,0
- ’ S

364 {4y 0.0 £,0,1 £,1,1 1) oo il ooty 2880 4320;«,0 3 5 476
o .0 oo RIS 2000320 8 0,003
L72s 'bL. R 1*1728%01ﬂ100“110.“12 '““,‘o-q,x»ﬂ“ 1,0 K112,

733%‘,*!‘100#101#111 1 iy e 044,

’ 2 ¢ 0 17, i £y 2 -8 ’*’onf-‘olo”l‘
noe, ,0,1 %1, 0, 11@ x‘“y
144 fjy 172 0.36,0,0 £4,0,1 4,1,14, 3 ‘“ h,0,1 &4,

P P E B " 0.0 K
3021~,'83%2“- 2 ”10 ozﬂu 0 M1,
1"'003#101 “x P
1320,(10 o 100 1,0,0 ,
~~°~°“MU1{3~»A¥°D.“SM1¢HM
: + 1296

‘ I"‘“l“lw'mo o#oxz“xoo“:oo oxﬂov'*”’
!320;100 , 2 ~v\,,.,uf‘v44*‘l,0,0
2,‘.‘010“ - -4

»
720#00xﬂo,a,o-“xoo.“zoo’“"ﬂoo2“030#100“200*233%0nﬂosxﬂxooﬂaoo
17230-‘4001%10“100”101“200'36*0“010”0,1,1“100#101%00'8640.“001%

4 f ' f T

I

Appendix

I A1 Is That the Right Answer, Dr Faustus?

o Symbolic Accuracy

Many people find the vagaries of integration to be a less than salubrious experience.
Excellent statistical reference texts can make ‘avoidance’ a reasonable strategy, but one
soon comes unstuck when one has to solve a non-textbook problem. With the advent of
computer software like mathStatica, the Faustian joy of computerised problem solving is
made ever more delectable. Indeed, over time, it seems likely that the art of manual
integration will slowly wither away, much like long division has been put to rest by the
pocket calculator. As we become increasingly reliant on the computer, we become more
and more dependent on its accuracy. Mathematica and mathStatica are, of course, not
always infallible, they are not panaceas for solving all problems, and it is possible (though
rare) that they may get an integral or summation problem wrong. Lest this revelation send
some readers running back to their reference texts, it should be stressed that those same
reference texts suffer from exactly the same problem and for the same reason: mistakes
usually occur because something has been ‘typeset’ incorrectly. In fact, after comparing
mathStatica’s output with thousands of solutions in reference texts, it is apparent that
even the most respected reference texts are peppered with surprisingly large numbers of
errors. Usually, these are typographic errors which are all the more dangerous because
they are hard to detect. A healthy scepticism for both the printed word and electronic
output is certainly a valuable (though time-consuming) trait to develop.

One advantage of working with a computer is that it is usually possible to test almost
any symbolic solution by using numerical methods. To illustrate, let us suppose that
X ~ Chi-squared(n) with pdf f(x):

x/2-1 g-x/2
f=——; domain[f] = {x, 0, «} && {n>0};
2n/2 I‘[%]

We wish to find the mean deviation E [| X —u |], where 11 denotes the mean:

u = Expect [x, f]

n

422 APPENDIX §A.1

Since Mathematica does not handle absolute values well, we shall enter |x —u | as the
expression If[x <y, u—x, x— 1. Then, the mean deviation is:

sol = Expect [If[x<u, u-x, x-pul], f£]

4Gamma[l+ 5, 3] -2nGamma[3, 5]

N

If, however, we refer to an excellent reference text like Johnson et al. (1994, p.420), the
mean deviation is listed as:

e 7 n?/2
JKBsol = —;
277t r[3]

First, we check if the two solutions are the same, by choosing a value for n, say n = 6:

{sol, JKBsol} /. n- 6.

{2.6885, 1.34425}

Clearly, at least one of the solutions is wrong! Generally, the best way to check an answer
is to use a completely different methodology to derive it again. Since our original attempt
was symbolic, we now use numerical methods to calculate the answer. This can be done
using functions such as NIntegrate and NSum. Here is the mean deviation as a
numerical integral when n = 6:

NIntegrate[(Abs[x-pu] £) /. n>6., {x, 0, «}]

— General::unfl : Underflow occurred in computation.
— General::unfl : Underflow occurred in computation.

— General::stop : Further output of
General: :unfl will be suppressed during this calculation.

— NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 7
recursive bisections in x near x = 5.918918918918919".

2.68852

The warning messages can be ignored, since a rough approximation serves our purpose
here. The numerical answer shows that mathStatica’s symbolic solution is correct; further
experimentation reveals that the solution given in Johnson et al. is out by a factor of two.
This highlights how important it is to check all output, from both reference books and
computers.

Finally, since u is used frequently throughout the text, it is good housekeeping to:

Clear[u]

... prior to leaving this example.]

SA.1 APPENDIX 423

o Numerical Accuracy

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

McCullough (2000, p.295)

Unfortunately, numerical accuracy is treated poorly in many common statistical packages,
as McCullough (1998, 1999a, 1999b) has detailed.

“Many textbooks convey the impression that all one has to do is use a
computer to solve the problem, the implicit and unwarranted assumption
being that the computer’s solution is accurate and that one software
package is as good as any other.”

McCullough and Vinod (1999, p. 635)

As a general ‘philosophy’, we try to avoid numerical difficulties altogether by treating
problems symbolically (exactly), to the extent that this is possible. This means that we try
to solve problems in the most general way possible, and that we also try to stop machine-
precision numbers from sneaking into the calculation. For example, we can input one-and-
a-half as % (an exact symbolic entity), rather than as 1.5. In this way, Mathematica can
solve many problems in an exact way, even though other packages would have to treat the
same problem numerically. Of course, some problems can only be treated numerically.
Fortunately, Mathematica provides two numerical environments for handling them:

(i) Machine-precision numbers (also known as floating-point): Almost all computers
have optimised hardware for doing numerical calculations. These machine-precision
calculations are very fast. However, using machine-precision forces all numbers to
have a fixed precision, usually 16 digits of precision. This may not be enough to
distinguish between two close numbers. For more detail, see Wolfram (1999, Section
3.1.6).

(ii) Arbitrary-precision numbers: These numbers can contain any number of digits, and
Mathematica keeps track of the precision at all points of the calculation.
Unfortunately, arbitrary-precision numerical calculations can be very slow, because
they do not take advantage of a computer’s hardware floating-point capabilities. For
more detail, see Wolfram (1999, Section 3.1.5).

Therein lies the trade-off. If you use machine-precision numbers in Mathematica, the
assumption is that you are primarily concerned with efficiency. If you use arbitrary-
precision numbers, the assumption is that you are primarily concerned with accuracy. For
more detail on numerical precision in Mathematica, see Sofroniou (1996). For a definitive
discussion of Mathematica’s accuracy as a statistical package, see McCullough (2000).
For Mathematica, the news is good:

“By virtue of its variable precision arithmetic and symbolic power,
Mathematica’s performance on these reliability tests far exceeds any
finite-precision statistical package.”

McCullough (2000, p.296)

424 APPENDIX §A.1

@ Example 1: Machine-Precision and Arbitrary-Precision Numbers

Let X ~ N(0, 1) with pdf f(x):

(Y

e T
f = ; domain[£f] = {x, —oo, };

The cdf, P(X < x), as a symbolic entity, is:
F = Prob[x, f]

1 X

e]

5 |LeEre[]

This is the exact solution. McCullough (2000, p.290) considers the point x = —7.6, way
out in the left tail of the distribution. We shall enter —7.6 using exact integers:

sol=F/.x> - —

19\/?}
5

1
E‘ l*Erf[

... so this answer is exact too. Following McCullough, we now find the numerical value of
sol using both machine-precision N[sol] and arbitrary-precision N[sol, 20]
numbers:

N[sol]

1.48215x107*

N[sol, 20]

1.4806537490048047086 x 107

Both solutions are correct up to three significant digits, 0.0000000000000148, but they
differ thereafter. In particular, the machine-precision number is incorrect at the fourth
significant digit. By contrast, all twenty requested significant digits of the arbitrary-
precision number 0.000000000000014806537490048047086 are correct, as we may verify
with:

76 }
107’
WorkingPrecision -» 30, PrecisionGoal - 20]

NIntegrate[f, {x, —o0, -

1.48065374900480470861 x107*

SA.1 APPENDIX 425

In the next input, we start off by using machine-precision, since —7.6 is entered with 2
digit precision, and we then ask Mathematica to render the result at 20-digit precision. Of
course, this is meaningless —the extra added precision N[-,20] cannot eliminate the
problem we have created:

N[F/.x--7.6, 20]

1.48215 x107%*

If numerical accuracy is important, the moral is not to let machine-precision numbers
sneak into one’s workings.]

I A.2 Working with Packages

Packages contain programming code that expand Mathematica’s toolset in specialised
fields. One can distinguish Mathematica packages from Mathematica notebooks, because
they each have different file extensions, as Table 1 summarises.

file extension description

.m Mathematica package
.nb Mathematica notebook

Table 1: Packages and notebooks

The following suggestions will help avoid problems when using packages:
(i) Always load a package in its own Input cell, separate from other calculations.

(ii) Prior to loading a package, it is often best to first quit the kernel (type Quit in the
front end, or use Kernel Menu > Quit Kernel). This avoids so-called ‘context’
problems. In particular, mathStatica should always be started from a fresh kernel.

(iii) The Wolfram packages are organised into families. The easiest way to load a specific
Wolfram package is to simply load its family. For instance, to use any of the
Wolfram statistics functions, simply load the statistics context with:

<< Statistics’

Note that the * used in <<Statistics® isnota’,nora',buta .
(iv) mathStatica is also a package, and we can load it using:
<< mathStatica.m
or

<< mathStatica’

426 APPENDIX §A.3

I A.3 Working with =, », == and :=
ClearaAll[x, v, z, q]
o Comparing Set (=) WithRule (—)
Consider an expression such as:
y=3 32
3 x2

We want to find the value of v when x = 3. Two standard approaches are: (i) Set (=),
and (ii) Rule (-).

(i) Set (=): Here, weset xtobe 3:

27

By entering x = 3 in Mathematica, we lose the generality of our analysis — x is now
just the number 3 (and not a general variable x). Thus, we can no longer find, for
example, the derivative D[y, x]; nor can we Plot[y, {x,1,2}1. In order to
return y to its former pristine state, we first have to clear x of its set value:

Clear([x]; v
3 x?

To prevent these sorts of problems, we tend to avoid using approach (i).

(i) Rule (-): Instead of setting x to be 3, we can simply replace x with 3 in just a
single expression, by using a rule; see also Wolfram (1999, Section 2.4.1). For
example, the following input reads, “Evaluate y when x takes the value of 3™

v/.x->3

27

This time, we have not permanently changed y or x. Since everything is still general,
we can still find, for example, the derivative of y with respect to x:

D[y, x]

6 x

SA3 APPENDIX 427

Comparing Set (=) With Equal (==

In some situations, both = and — are inappropriate. Suppose we want to solve the equation
z ==Log [x] in terms of x. If we input Solve[z =Log[x], x] (with one equal
sign), we are actually asking Mathematica to Solve [Log[x], x], which is not an
equation. Consequently, the = sign should never be used with the Solve function.
Instead, we use the == sign to represent a symbolic equation:

Solve[z == Log[x], x]

{{x>e"}}

If, by mistake, we enter Solve[z = Log[x], x], then we must first Clear[z]
before evaluating Solve [z == Log [x], x] again.

Comparing Set (=) With SetDelayed (:=)

When defining functions, it is usually better to use SetDelayed (:=) than an
immediate Set (=). When one uses Set (=), the right-hand side is immediately
evaluated. For example:

Fl[x] = x+ Random[]

0.733279 +x

So, if we call F1 four times, the same pseudo-random number appears four times:

Table[Fl[q], {4}]

{0.733279 +qg, 0.733279 +q, 0.733279 +qg, 0.733279 + g}

But, if we use SetDelayed (:=), as follows:

F2[x_] := x+ Random]|]

then each time we call the function, we get a different pseudo-random number:

Table [F2[q], {4}]

{0.143576 +qg, 0.77971 +q, 0.778795 +q, 0.618496 + g}

While this distinction may appear subtle at first, it becomes important when one starts
writing Mathematica functions. Fortunately, it is quite easy to grasp after a few examples.

In similar vein, one can use RuleDelayed - instead of an immediate Rule —.

428 APPENDIX SA4

I A4 Working with Lists

Mathematica uses curly braces {} to denote lists, not parentheses (). Here, we enter the
list X = {x{, ..., xg}:

X={X1, X3, X3, X4, X5, Xg}i
The fourth element, or part, of list X is:

X[[4]]

X4

Sometimes, X [4] is used rather than X [[4]]. The fancy double bracket [is obtained by
entering [[[Esc] . We now add 5 to each element of the list:

X+5

{5+%x1, 5+x3, 5+x3, 5+%X4, 5+xs5, 5+x4}
Other common manipulations include:
Plus @@ X

X1 +Xg + X3 +Xy +Xg + Xg

Times @@ X

X1 Xy X3 X4 X5 Xg

Power @@ X

Here is a more sophisticated function that constructs an alternating sum:

Fold[(#2 - #1) &, 0, Reverse[X]]

X1 —Xg + X3 — Xy +Xg —Xg
Next, we construct an Assumptions statement for the x;, assuming they are all positive:

Thread [X > 0]

{X1>O, X2>O, X3>O, X4>O, X5>O, X6>O}

Here is a typical mathStatica ‘domain’ statement assuming x; € (=, 0):

SA.4 APPENDIX 429

Thread [{X, -, 0}]

{{x1, -, 0}, {x2, -, 0}, {x3, -, 0},
{X4, -, O}, {X5, -, O}, {XGI -y O}}

Finally, here is some data:

data = Table[Random|[], {6}]

{0.530808, 0.164839, 0.340276,
0.595038, 0.674885, 0.562323}

which we now attach to the elements of X using rules —, as follows:

Thread [X -» data]

{x1 -0.530808, x, »0.164839, x3 - 0.340276,
xq4 » 0.595038, x5 - 0.674885, x4 - 0.562323}

These tricks of the trade can sometimes be very useful indeed.

I A.5 Working with Subscripts

In mathematical statistics, it is both common and natural to use subscripted notation such
as yi, ..., y,. This section first discusses “The Wonders of Subscripts” in Mathematica,
and then provides “Two Cautionary Tips”.

The Wonders of Subscripts
Clear|[u]

Subscript notation L1, L, ..., g offers many advantages over ‘dead’ notation such as
ul, u2, ..., u8. For instance, let:

r = Range[8]

{1, 2,3,4,5,6,7, 8}
Then, to create the list z = {1, 15, ..., 17, g}, WE enter:

z = Thread[u.]

{my, Moy M3, Has Us, Hes U7, HUgl

We can now take advantage of Mathematica’s advanced pattern matching technology to
convert from subscripts to, say, powers:

430 APPENDIX §A.S
z /. Uy - s*
(s, s?, s*, s*, s°, s%, s7, &%)
and back again:
% /. 8% > Uy
{ta, M2y M3, Hay Us, Heys K7, Mg}
Next, we convert the ; into functional notation p[i]:
zZ /. My - p[x]
{ul1], pl2), p[31, ul4), pu(5], pl6], u(7]1, pi8]}
Now, suppose that 11, (=1, ..., 8) denotes . at time t. Then, we can go ‘back’ one period

in time:

Z /. MHe_ > Hea

{to, M1, M2, M3, Ha, Us, He, M7}

Or, try something like:

zZ /. Ug_ -

{Ll%i“?’ 4 Hs He M7

7

roT3T

pe w3 ot ous oy o

Because the index ¢ is ‘live’, quite sophisticated pattern matching is possible. Here, for

instance, we replace the even-numbered subscripted elements with A:

zZ /. ue_ > If[EvenQ[t], Ae ., Hel

{,ull AZ! M3y A4I Hs A6I H7 A&S}
Now suppose that a random sample of size n = 8, say:

data = {0, 1,3,0,1, 2,0, 2};

is collected from a random variable X ~ Poisson(A) with pmf f(x):

f = ; domain[f] = {x, 0, «} && {A > 0} && {Discrete};

Then, using subscript notation, the symbolic likelihood can be entered as:

SA.5 APPENDIX 431

L =]__-[(f/.x—u:i)
i=1

n - .
[T
X3!

i=1

while the observed likelihood is obtained via:

L/.{n->8, x; :>dataf[i]}

1

-8 39
A
24

e

o Two Cautionary Tips

Caution 1: While subscript notation has many advantages in Mathematica, its use also
requires some care. This is because the internal representation in Mathematica of the
subscript expression vy, is quite different to the Symbol y. Technically, this is because
Head[y] == Symbol, while Head [y;] == Subscript. That is, Mathematica thinks
of y as a Symbol, while it thinks of v, as Subscript [y, 1]; see also Appendix A.8.
Because of this difference, the following is important.

Suppose we set v = 3. To clear y, we would then enter Clear [y]:
y = 3; Clear(yl; Yy
Yy

For this to work, v must be a Symbol. It will not work for y;, because the internal
representation of y; is Subscript [y, 1], which is not a Symbol. The same goes for
v, V., y*, and other notational variants of y. For instance:

y1 =3; Clear[yi]; vi
— Clear::ssym : y; is not a symbol or a string.

3

Instead, to clear y, , one must use either y, = ., asin:
Y1=3; Y1 =.;i W1
Y1

or the more savage Clear [Subscript]:
v1 =3; Clear[Subscript]:; wv:
Y1

Note that Clear [Subscript] will clear all subscripted variables. This can be used as
a nifty trick to clear all of {y;, v,, ..., vy, } simultaneously!

432 APPENDIX SA.S

Caution 2: In Mathematica Version 4.0, there are still a few functions that do not
handle subscripted variables properly (though this seems to be mostly fixed as of Version
4.1). This problem can usually be overcome by wrapping Evaluate around the relevant
expression. For instance, under Version 4.0, the following generates error messages:

f = Exp[x;]:; NIntegrate[f, {x;, -, 2}]

— Function::flpar :
Parameter specification {x;} in Function[{x;}, {f}]
should be a symbol or a list of symbols.

— General::stop : Further output of Function::flpar will
be suppressed during this calculation.

— NIntegrate::inum :
Integrand {4.} is not numerical at {x;} = {1.}.

NIntegrate[f, {xi, -, 2}]

Wrapping Evaluate around £ overcomes this ‘bug’ by forcing Mathematica to evaluate
£ prior to starting the numerical integration:

f = Exp[x;]; NIntegrate[Evaluate[f], {x;1, -oo, 2}]

7.38906
Alternatively, the following also works fine:

NIntegrate[Exp[x;], {X1, -, 2}]

7.38906
Similarly, the following produces copious error messages under Version 4.0:

f=x, +%x,; Plot3D[f, {xi, 0, 1}, {x2, 0, 1}]
but if we wrap Evaluate around £, the desired plot is generated:

f=x; +x%;,; Plot3D[Evaluate[f], {x;, 0, 1}, {x>, 0, 1}]
As a different example, the following works fine:

D[x3 x, Xi]

2
3 xx7

but the next input does not work as we might expect, because x; = Subscript [x, 1]
is interpreted by Mathematica as a function of x:

D[x x, X]

%3 + 3 xx? subscript % [x, 1]

§A.6 APPENDIX 433

I A.6 Working with Matrices

This appendix gives a brief overview of matrices in Mathematica. A good starting point is
also Wolfram (1999, Sections 3.7.1 —3.7.11). Two standard Mathematica add-on packages
may also be of interest, namely LinearAlgebra MatrixManipulation® and
Statistics DataManipulation'.

o Constructing Matrices

In Mathematica, a matrix is represented by a list of lists. For example, the matrix

1 2 3

4 5 6
A=

7 8 9

10 11 12

can be entered into Mathematica as follows:

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}

1 2 3
4 5 6
7 8 9
10 11 12

If mathStatica is loaded, this output will appear on screen as a fancy formatted matrix. If
mathStatica is not loaded, the output will appear as a List (just like the input). If you do
not like the fancy matrix format, you can switch it off with the mathStatica function
FancyMatrix—see Appendix A.8.

Keyboard entry: Table 2 describes how to enter fancy matrices directly from the
keyboard. This entry mechanism is quite neat, and it is easily mastered.

short cut description
, add a column

add arow

Table 2: Creating fancy matrices using the keyboard

23
For example, to enter the matrix (45 6), type the following keystrokes in an Input cell:

(1 f[mw, 2 [mw, 3 4 el 5 Mg 6 -)
23 the int 1 tati i
45 6)’ e internal representation in

Mathematicais still {{1, 2, 3}, {4, 5, 6}}.

1
While this may appear as the fancy matrix (

434 APPENDIX §A.6

A number of Mathematica functions are helpful in constructing matrices, as the
following examples illustrate. Here is an identity matrix:

IdentityMatrix[5]

O O o o
O O O o
O OB OO
O O OO
P O O oo

... a diagonal matrix:

DiagonalMatrix[{a, b, c, d}]

o o o w
o o o o
O N O o
0, O o o

... amore general matrix created with Table:

Table[a[i, j]' {il 2}1 {jl 4}]

... an example using subscript notation:

Table[ai,j, {il 2}, {jl 4}]

di,1 41,2 4ai,3 ai,s

az,1 a@2,2 4z,3 a4z
... an upper-triangular matrix:

Table[If[i<3j, ©, 0], {i, 5}, {3, 5}]

®© © © © 0O
0 © © © ©
0 0 © © ©
0 0 0 © ©
0 0 0 0 ©

... and a Hilbert matrix:

Table[1/ (i+3j-1), {i, 3}, {J, 3}]

u‘p—\ w‘n—\ =
I I NI
vk e wle

§A.6 APPENDIX 435

Operating on Matrices

Consider the matrices:

M_(a b). B_(l 2).
“\e al’ “\3 4’

For detail on getting pieces of matrices, see Wolfram (1999, Section 3.7.2). In particular,
here is the first row of M:

M[1]

{a, b}

An easy way to grab, say, the second column of M is to select it with the mouse, copy, and
paste it into a new Input cell. If desired, this can then be converted into InputForm (Cell
Menu > ConvertTo > InputForm). Alternatively, we can obtain the second column with:

M[All, 2]

{a, c}
The dimension (2x2) of matrix M is obtained with:

Dimensions [M]

{2, 2}
The transpose of M is:
Transpose [M]
(5 al
b d
The determinant of M is given by:

Det [M]

-bc+ad
The inverse of M is:

Inverse [M]

d b

-bc+ad -bc+ad

_ c a
-bc+ad -bc+ad

436 APPENDIX

The trace is the sum of the elements on the main diagonal
Tr [M]

a+d
Here are the eigenvalues of M:

Eigenvalues [M]

{%<a+d7V¥+4bcf2ad+&),
1
2

<a+d+V¥+4bcf2ad+&)}

To illustrate matrix addition, consider B + M:

B+M
l+a 2+Db
3+c 4+d

To illustrate matrix multiplication, consider B M
B.M

a+2c b+2d
3a+4c 3b+4d

... which is generally not equal to M B:

M.B

a+3b 2a+4b
c+3d 2c+4d

Similarly, here is the product B M B:

B.M.B

a+2c+3 (b+24d)

2(a+2c)+4 (b+24d)
3a+4c+3 (3b+44d)

2 (3a+4dc)+4 (3b+44d)

... which is generally not equal to BT M B:

Transpose [B] .M.B

a+3c+3 (b+34d)

2(a+3c)+4 (b+34d)
2a+4c+3 (2b+44d)

2 (2a+4dc)+4 (2b+44)

§A.6

§A.6 APPENDIX 437

Powers of a matrix, such as B> = B B B, can either be entered as:

MatrixPower [B, 3]

(37 54)
81 118
or as:
B.B.B
(37 54)
81 118
but not as:
B3
(27 eu)
27 64

Mathematica does not provide a function for doing Kronecker products, so here is one we
put together for this Appendix:

Kronecker[A_, B_] :=
Partition|
Flatten|
Map [Transpose, Outer[Times, A, B]]
], Dimensions[A] [2] Dimensions [B] [2]]

For example, here is the Kronecker product B® M:

Kronecker [B, M]

a b 2a 2b
c d 2c 2d
3a 3b 4a 4D
3¢ 3d 4c 4d

and here is the Kronecker product M ® B:

Kronecker [M, B]

a 2a b 2b
3a 4a 3b 4D
c 2c d 2d
3¢ 4c¢c 3d 4d

438 APPENDIX SA.T

I A7 Working with Vectors

There are two completely different ways to enter a vector in Mathematica:

(i) The List Approach: This is the standard Mathematica method. It does not
distinguish between column and row vectors. Thus, Transpose cannot be used on
these vectors.

(i) The Matrix Approach: Here, a vector is entered as a special case of a matrix. This
does distinguish between column and row vectors, so Transpose can be used with
these vectors. Entering the vector this way takes more effort, but it can be less
confusing and more ‘natural’ than the Li st approach.

In this book, we use approach (i). Mixing the two approaches is not recommended, as this
may cause error and confusion.

Vectors as Lists

The standard Mathematica way to represent a vector is as a List {...}, not a matrix
{{...}}. Consider, for example:

vec = {15, -3, 5}

{15, -3, 5}
Mathematica thinks vec is a vector:

VectorQ[vec]

True

Is vec a column vector or a row vector? The answer is neither. Importantly, when the
List approach is used, Mathematica makes no distinction between column and row
vectors. Instead, Mathematica carries out whatever operation is possible. This can be
confusing and disorienting. To illustrate, suppose we are interested in the (3x1) column
vector v and the (1x3) row vector #, given by

a
p=|b| and H=(1 2 3).
C

Using the List approach, we enter both of them into Mathematica in the same way:

v = {a, b, c}
u= {1, 2, 3}
{a, b, c}
{1, 2, 3}

SA.7 APPENDIX 439

Although we can find the Transpose of a matrix, there is no such thing as a
Transpose of a Mathematica Vector:
Transpose [v]

— Transpose::nmtx : The first two levels of the
one-dimensional list {a, b, ¢} cannot be transposed.

Transpose|[{a, b, c}]
Once again, this arises because Mathematica does not distinguish between column vectors

and row vectors. To stress the point, this means that the Mathematica input for v and vl is
exactly the same.

When the Dot operator is applied to two vectors, it returns a scalar. Thus, v.v is
equivalent to TRy (1x1):
v.v

a? +b? + c?
while u. u is equivalent to ﬁﬁT(l x1):

u.u

14

In order to obtain v 7" (3x3) and TR (3x3), we have to derive the outer product using the
rather cumbersome expression:

Outer [Times, v, V]

a’? ab ac

ab b? Dbc

ac bc c?

Outer [Times, u, u]

1 2 3
2 4 6
3 6 9

Next, suppose:

1 00
M=|4 5 6]|:;
0 0 9

440 APPENDIX SA.T

Then, 3 M v (1x1) is evaluated with:

v.M.v

5b?+a (a+4b) +c (6b+9c)
and i M 7' (1x1)is evaluated with:

u.M.u

Once again, we stress that we do not use u.M. Transpose [u] here, because one cannot
find the Transpose of a Mathematica Vector.

The mathStatica function Grad [f, Xx] calculates the gradient of scalar f with respect
to X = {x1, ..., x,}, namely

Here, then, is the gradient of f = a b*> with respect to v:

f=ab?; Grad[f, v]
{b%?, 2ab, 0}
The derivative of a vector with respect to a vector yields a matrix. If 7‘ is an m-

dimensional vector, and X is an n-dimensional vector, then Grad[j‘, X] calculates the
(mxn) matrix:

Ofi ... Of
0x; 0x,
afm afm
ox, 0x,

This is also known as the Jacobian matrix. Here is an example:

f={ab?, a, b, ¢?, 1}; Grad[f, v]

b2 2ab 0
1 0 0
0 1 0
0 0 2c
0 0 0

SA.7 APPENDIX 441

o Vectors as Matrices

Column vectors (mx1) and row vectors (1xn) are, of course, just special cases of an
(mxn) matrix. In this vein, one can force Mathematica to distinguish between a column
vector and a row vector by entering them both as matrices {{...}}, rather than as a single
List {...}. To illustrate, suppose we are interested again in the (3x 1) column vector v and
the (1x3) row vector u, given by

a

p=|b| and H=(1 2 3).
C

This time, we shall enter both v and u into Mathematica as if they were matrices. So, we
enter the column vector V as:

V= {{a}, {b}, {c}}

a
b
c

As far as Mathematica is concerned, this is not a Vector:

VectorQ[V]

False
Rather, Mathematica thinks it is a Matrix:

MatrixQ[V]

True
Similarly, we enter the row vector % as if it is the first row of a matrix:

U={{1, 2, 3}} (* not {1,2,3} =x)

({1, 2,3}}

VectorQ[U]

False

MatrixQ[U]

True

442 APPENDIX SA.T

Because V and U are Mathematica matrices, Transpose now works:

Transpose [V]

{{a, b, c}}

Transpose [U]

1
2
3

We can now use standard notation to find v' v (Ix1):

Transpose[V] .V

{{a%? +b% +c?}}
and 73 (1x1):

U.Transpose [U]

{{14}}

To obtain v ﬁT(S x3) and TR (3x3), we no longer have to use Outer products. Again, the
. . . . N |
answer is obtained using standard notation. Here is v v :

V.Transpose[V]

2

a ab ac

ab b®> bc

ac bc c?

—

T
and u u:

Transpose [U] .U

1 2 3
2 4 6
3 6 9

Next, suppose:

1 00
M=[4 5 6];

0 09

SA.7 APPENDIX 443

Then, 3" M ¥ (1x1) is evaluated with:

Transpose [V] .M.V

({(5b?+a (a+d4b)+c (6b+9c)})
and @M @' (1x1)is evaluated with:

U.M.Transpose [U]

{{146}}

...notwithU.M.U.

The Matrix approach to vectors has the advantage that it allows one to distinguish
between column and row vectors, which seems more natural. However, on the downside,
many Mathematica functions (including Grad) have been designed to operate on a single
List (Vector), not on a matrix; these functions will often not work with vectors that
have been entered using the Matrix approach.

I A.8 Changes to Default Behaviour

mathStatica makes a number of changes to default Mathematica behaviour. These
changes only take effect after you load mathStatica, and they only remain active while
mathStatica is running. This section lists three ‘visual’ changes.

Case 1: T'[x]

If mathStatica is not loaded, the expression T'[x] has no meaning to Mathematica. If
mathStatica is loaded, the expression T'[x] is interpreted as the Mathematica function
Gamma [x]:

T'[x%x] == Gamma [x]

True

Case 2: Subscript and Related Notation in Input Cells

Quit

If mathStatica is nor loaded, it is best to avoid mixing x with its variants {x;, X, ...} in
Input cells. To see why, let us suppose we set x = 3:

444 APPENDIX SA.8

and then evaluate:
{%1, x*, &, %, %, %, %, x}
{3:,3,3,3,3,3,3, 3}

This output is not the desired behaviour in standard notational systems.
Quit

However, if mathStatica is loaded, we can work with x and its variants {x;, %, ...} at the
same time without any ‘problems’:

<< mathStatica.m

x=3

This time, Mathematica treats the variants {x;, %, ...} in the way we want it to:

= ~ A . \
{xll x*l X, }A" X, X, X, x}

-

A~ . N
{Xl, x*, X, X, ¥, X, %X, X}

This change is implemented in mathStatica simply by adding the attribute HoldFirst
to the following list of functions:

lis = {Subscript, SuperStar, OverBar, OverVector,
OverTilde, OverHat, OverDot, Overscript,
Superscript, Subsuperscript, Underscript,
Underoverscript, SubPlus, SubMinus, SubStar,
SuperPlus, SuperMinus, SuperDagger, UnderBar};

This idea was suggested by Carl Woll. In our experience, it works brilliantly, without any
undesirable side effects, and without the need for the Notation package which can
interfere with the subscript manipulations used by mathStatica. If, for some reason, you
do not like this feature, you can return to Mathematica’s default behaviour by entering:

ClearAttributes [Evaluate[lis], HoldFirst]

Of course, if you do this, some Input cells in this book may no longer work as intended.

Case 3: Matrix Output

If mathStatica is not loaded, matrices appear as lists. For example:

Quit

SA.8 APPENDIX 445

m = Table[i- j, {i, 4}, {j, 5}]

{{OI 71/ 721 73/ 74}1 {11 OI 71/ 721 73}/
{2, 1,0, -1, -2}, {3,2,1,0, -1}}

If, however, mathStatica is loaded, matrices automatically appear nicely formatted as
matrices. For example:

Quit
<< mathStatica.m
m = Table[i -3, {i, 4}, {3, 5}]

-1 -2 -3 -4
0 -1 -2 -3
1 0 -1 -2
2 1 0 -1

w N P O

Standard matrix operations still operate flawlessly:

m[1]

{o, -1, -2, -3, -4}

m+ 2
2 1 0 -1 -2
321 0 -1
4 3 2 1 0
5 4 3 2 1

Moreover, it is extremely easy to extract a column (or two): simply select the desired
column with the mouse, copy, and paste it into a new Input cell. If desired, you can then
convert into InputForm (Cell Menu > ConvertTo > InputForm).

This trick essentially eliminates the need to use the awkward MatrixForm
command. If, for some reason, you do not like this fancy formatted output (e.g. if you
work with very large matrices), you can return to Mathematica’s default behaviour by
simply evaluating:

FancyMatrix[Off]
— FancyMatrix is now Off.
Then:
m

{{OI 71/ 721 73/ 74}1 {11 OI 71/ 721 73}/
{2, 1,0, -1, -2}, {3,2,1,0, -1}}

You can switch it on again with FancyMatrix[On].

446 APPENDIX SA.9

I A.9 Building Your Own mathStatica Function

The building blocks of mathematical statistics include the expectations operator, variance,
probability, transformations, and so on. A lot of effort and code has gone into creating
these functions in mathStatica. The more adventurous reader can create powerful custom
functions by combining these building blocks in different ways — much like a LEGO® set.
To illustrate, suppose we want to write our own function to automate kurtosis calculations
for an arbitrary univariate density function f. We recall that kurtosis is defined by

Br= /13

where 11, = E[(X — 11)"]. How many arguments should our Kurtosis function have? In
other words, should it be Kurtosis[x, u, £1, or Kurtosis([x, £], or just
Kurtosis [£]1? If our function is smart, we will not need the ‘x’, since this information
can be derived from domain[f]; nor do we need the ‘u’, because this can also be
calculated from density f£. So, the neat solution is simply Kurtosis[f]. Then, we
might proceed as follows:

RKurtosis[f_] := Module[{xx,mean,var,sol,b=domain[£f]},

xx = If[Head[b] === And, bI[I[1,1]1]1, bI[1]111];
mean = Expect[xx, £f];
var = Var[xx, f]:;
sol = Expect[(xx - mean)*4, f] / var’*2;
Simplify[soll]]

In the above, the term xx picks out the random variable x from any given domain[f]
statement. We also need to set the Attributes of our Kurtosis function:

SetAttributes [Kurtosis, HoldFirst]

What does this do? The HoldFirst expression forces the Kurtosis function to hold
the £ as an ‘f’, rather than immediately evaluating it as, say, £ = e™* A* /x!. By holding
the f, the function can then find out what domain[f] has been set to, as opposed to
domain[e™ A*/x!]. Similarly, it can evaluate Expect[x, £] or Var[x, £]. More
generally, if we wrote a function MyFunc [n_, f£_], where f is the second argument
(rather than the first), we would use SetAttributes [MyFunc, HoldRest], so that
the £ is still held. To illustrate our new function, suppose X ~ Poisson(d) with pmf f(x):

e—)\ Ax
f = — i domain[f] = {x, 0, >} && {A > 0} && {Discrete};
x!

Then, the kurtosis of the distribution is:

Kurtosis[f]

1

3 —
X

